Direct numerical simulation (DNS) modeling of PEFC electrodes - Part I. Regular microstructure

被引:83
|
作者
Wang, GQ
Mukherjee, PP
Wang, CY [1 ]
机构
[1] Penn State Univ, Electrochem Engn Ctr, ECEC, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
关键词
polymer electrolyte fuel cell; cathode catalyst layer; pore-level description; direct numerical simulation (DNS);
D O I
10.1016/j.electacta.2005.09.002
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A direct numerical simulation (DNS) model is developed to achieve pore-level description of polymer electrolyte fuel cell (PEFC) electrodes. The DNS method solves point-wise accurate conservation equations directly on an electrode microstructure comprising of various phases and hence utilizes the intrinsic transport properties of each phase. Idealized two- and three-dimensional regular microstructures are constructed to represent the porous cathode catalyst layer. Various voltage losses identified from the simulation results are compared with experimental observations. This pore-scale model is further applied to study the morphological effects, such as pore size, layer thickness and porosity, on the performance of the cathode catalyst layer. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3139 / 3150
页数:12
相关论文
共 50 条
  • [21] Direct Numerical Simulation (DNS) on the Influence of Grid Refinement for the Process of Splashing
    Gomaa, Hassan
    Weigand, Bernhard
    Haas, Mark
    Munz, Claus Dieter
    [J]. HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING '08, 2009, : 241 - +
  • [22] PtxCoy Catalysts Degradation in PEFC Environments: Mechanistic Insights I. Multiscale Modeling
    Franco, Alejandro A.
    Passot, Sylvain
    Fugier, Pascal
    Anglade, Christelle
    Billy, Emmanuel
    Guetaz, Laure
    Guillet, Nicolas
    De Vito, Eric
    Mailley, Sophie
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (03) : B410 - B424
  • [23] Mathematical modeling of a direct current electric arc:: Part I.: Analysis of the characteristics of a direct current arc
    Ramírez, M
    Trapaga, G
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2004, 35 (02): : 363 - 372
  • [24] Mathematical modeling of a direct current electric arc: Part I. Analysis of the characteristics of a direct current arc
    Marco Ramírez
    Gerardo Trapaga
    [J]. Metallurgical and Materials Transactions B, 2004, 35 : 363 - 372
  • [25] 33 YEARS OF NUMERICAL INSTABILITY, PART I.
    Dahlquist, Germund
    [J]. BIT (Copenhagen), 1985, 25 (01): : 188 - 204
  • [26] Review and advances of direct methanol fuel cells: Part II: Modeling and numerical simulation
    Bahrami, Hafez
    Faghri, Amir
    [J]. JOURNAL OF POWER SOURCES, 2013, 230 : 303 - 320
  • [27] Modeling of nonstationary time-series data. Part I. Data with regular periodic trends
    Barakat, EH
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2001, 23 (01) : 57 - 62
  • [28] COMPRESSIBLE DIRECT NUMERICAL SIMULATION OF LOW-PRESSURE TURBINES: PART I - METHODOLOGY
    Sandberg, Richard D.
    Pichler, Richard
    Chen, Liwei
    Johnstone, Roderick
    Michelassi, Vittorio
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2014, VOL 2D, 2014,
  • [29] Direct numerical simulation (DNS) of alkali metals released during char combustion
    Qu, Sibo
    You, Changfu
    [J]. FUEL, 2019, 255
  • [30] Towards a direct numerical simulation (DNS) of particle motion close to river beds
    Gonzalez, A. E.
    Bombardelli, F. A.
    Nino, Y.
    [J]. RIVER FLOW 2006, VOLS 1 AND 2, 2006, : 799 - +