Direct numerical simulation (DNS) modeling of PEFC electrodes - Part I. Regular microstructure

被引:83
|
作者
Wang, GQ
Mukherjee, PP
Wang, CY [1 ]
机构
[1] Penn State Univ, Electrochem Engn Ctr, ECEC, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
关键词
polymer electrolyte fuel cell; cathode catalyst layer; pore-level description; direct numerical simulation (DNS);
D O I
10.1016/j.electacta.2005.09.002
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A direct numerical simulation (DNS) model is developed to achieve pore-level description of polymer electrolyte fuel cell (PEFC) electrodes. The DNS method solves point-wise accurate conservation equations directly on an electrode microstructure comprising of various phases and hence utilizes the intrinsic transport properties of each phase. Idealized two- and three-dimensional regular microstructures are constructed to represent the porous cathode catalyst layer. Various voltage losses identified from the simulation results are compared with experimental observations. This pore-scale model is further applied to study the morphological effects, such as pore size, layer thickness and porosity, on the performance of the cathode catalyst layer. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3139 / 3150
页数:12
相关论文
共 50 条
  • [1] Direct numerical simulation (DNS) modeling of PEFC electrodes - Part II. Random microstructure
    Wang, GQ
    Mukherjee, PP
    Wang, CY
    [J]. ELECTROCHIMICA ACTA, 2006, 51 (15) : 3151 - 3160
  • [2] Stochastic microstructure reconstruction and direct numerical simulation of the PEFC catalyst layer
    Mukherjee, PP
    Wang, CY
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (05) : A840 - A849
  • [3] Analysis of pipe flow transition. Part I. Direct numerical simulation
    Reuter, J
    Rempfer, D
    [J]. THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2004, 17 (04) : 273 - 292
  • [4] Analysis of pipe flow transition. Part I. Direct numerical simulation
    Jörg Reuter
    Dietmar Rempfer
    [J]. Theoretical and Computational Fluid Dynamics, 2004, 17 : 273 - 292
  • [5] Numerical modeling of flow and scour below a pipeline in currents - Part I. Flow simulation
    Liang, DF
    Cheng, L
    [J]. COASTAL ENGINEERING, 2005, 52 (01) : 25 - 42
  • [6] NUMERICAL JET ATOMISATION: PART I: DNS SIMULATION OF PRIMARY BREAK UP
    Menard, T.
    Tanguy, S.
    Beau, P. A.
    Demoulin, F. X.
    Berlemont, A.
    [J]. PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE, VOL 1, PTS A AND B, 2006, : 547 - 554
  • [7] Modeling thermal shock damage in refractory materials via direct numerical simulation (DNS)
    Ozdemir, I.
    Brekelmans, W. A. M.
    Geers, M. G. D.
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2010, 30 (07) : 1585 - 1597
  • [8] Transient techniques for investigating mass-transport limitations in gas diffusion electrodes - I. Modeling the PEFC cathode
    Jaouen, F
    Lindbergh, G
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (12) : A1699 - A1710
  • [9] Numerical simulation of compression molding of UHMWPE - part I. Thermal model
    Parasnis, NC
    Ramani, K
    [J]. INTERNATIONAL POLYMER PROCESSING, 2000, 15 (02) : 180 - 193
  • [10] Numerical Simulation of Compression Molding of UHMWPE Part I. Thermal Model
    Parasnis, N. C.
    Ramani, K.
    [J]. INTERNATIONAL POLYMER PROCESSING, 2022, 15 (02) : 180 - 193