Crawling and turning in a minimal reaction-diffusion cell motility model: Coupling cell shape and biochemistry

被引:66
|
作者
Camley, Brian A. [1 ]
Zhao, Yanxiang [2 ]
Li, Bo [3 ,4 ]
Levine, Herbert [5 ]
Rappel, Wouter-Jan [1 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] George Washington Univ, Dept Math, Washington, DC 20052 USA
[3] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Grad Program Quantitat Biol, La Jolla, CA 92093 USA
[5] Rice Univ, Ctr Theoret Biol Phys, Dept Bioengn, Houston, TX 77005 USA
来源
PHYSICAL REVIEW E | 2017年 / 95卷 / 01期
基金
美国国家科学基金会;
关键词
SELF-POLARIZATION; PHASE-SEPARATION; FLOW; INFORMATION; MECHANISMS; MOVEMENT; DYNAMICS; POLARITY; MOTION;
D O I
10.1103/PhysRevE.95.012401
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study a minimal model of a crawling eukaryotic cell with a chemical polarity controlled by a reaction-diffusion mechanism describing Rho GTPase dynamics. The size, shape, and speed of the cell emerge from the combination of the chemical polarity, which controls the locations where actin polymerization occurs, and the physical properties of the cell, including its membrane tension. We find in our model both highly persistent trajectories, in which the cell crawls in a straight line, and turning trajectories, where the cell transitions from crawling in a line to crawling in a circle. We discuss the controlling variables for this turning instability and argue that turning arises from a coupling between the reaction-diffusion mechanism and the shape of the cell. This emphasizes the surprising features that can arise from simple links between cell mechanics and biochemistry. Our results suggest that similar instabilities may be present in a broad class of biochemical descriptions of cell polarity.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A COMPUTATIONAL MODEL OF CELL POLARIZATION AND MOTILITY COUPLING MECHANICS AND BIOCHEMISTRY
    Vanderlei, Ben
    Feng, James J.
    Edelstein-Keshet, Leah
    MULTISCALE MODELING & SIMULATION, 2011, 9 (04): : 1420 - 1443
  • [2] On the influence of cell shape on dynamic reaction-diffusion polarization patterns
    Eroume, K.
    Vasilevich, A.
    Vermeulen, S.
    de Boer, J.
    Carlier, A.
    PLOS ONE, 2021, 16 (03):
  • [3] Mass-Conservation Increases Robustness in Stochastic Reaction-Diffusion Models of Cell Crawling
    Moreno, Eduardo
    Alonso, Sergio
    FRONTIERS IN PHYSICS, 2022, 10
  • [4] Errata to 'A compartmental reaction-diffusion cell cycle model'
    Busenberg, S.N.
    Mahaffy, J.M.
    Computers & Mathematics with Applications, 1990, 20 (07):
  • [5] A COMPARTMENTAL REACTION-DIFFUSION CELL-CYCLE MODEL
    BUSENBERG, SN
    MAHAFFY, JM
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1989, 18 (10-11) : 883 - 892
  • [6] Reaction-diffusion problems in cell tissues
    De Carvalho A.N.
    Cuminato J.A.
    Journal of Dynamics and Differential Equations, 1997, 9 (1) : 93 - 131
  • [7] Running pulses of complex shape in a reaction-diffusion model
    Lobanova, ES
    Ataullakhanov, FI
    PHYSICAL REVIEW LETTERS, 2004, 93 (09) : 098303 - 1
  • [8] A reaction-diffusion within-host HIV model with cell-to-cell transmission
    Ren, Xinzhi
    Tian, Yanni
    Liu, Lili
    Liu, Xianning
    JOURNAL OF MATHEMATICAL BIOLOGY, 2018, 76 (07) : 1831 - 1872
  • [9] Transition between Swimming and Crawling: A Model of Eukaryotic Cell Motility
    Mai, Melissa H.
    Camley, Brian A.
    BIOPHYSICAL JOURNAL, 2019, 116 (03) : 546A - 546A
  • [10] Integration of Reaction-Diffusion Master Equation and Brownian Dynamics Methodologies to Simulate a Minimal Cell
    Earnest, Tyler M.
    Hallock, Michael J.
    Luthey-Schulten, Zaida
    BIOPHYSICAL JOURNAL, 2019, 116 (03) : 273A - 274A