Intrinsic Image Decomposition Using Optimization and User Scribbles

被引:74
|
作者
Shen, Jianbing [1 ]
Yang, Xiaoshan [1 ]
Li, Xuelong [2 ]
Jia, Yunde [1 ]
机构
[1] Beijing Inst Technol, Beijing Lab Intelligent Informat Technol, Sch Comp Sci, Beijing 100081, Peoples R China
[2] Chinese Acad Sci, Ctr OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy optimization; illumination; intrinsic images; reflectance; user scribbles; COLOR; RETINEX;
D O I
10.1109/TSMCB.2012.2208744
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a novel high-quality intrinsic image recovery approach using optimization and user scribbles. Our approach is based on the assumption of color characteristics in a local window in natural images. Our method adopts a premise that neighboring pixels in a local window having similar intensity values should have similar reflectance values. Thus, the intrinsic image decomposition is formulated by minimizing an energy function with the addition of a weighting constraint to the local image properties. In order to improve the intrinsic image decomposition results, we further specify local constraint cues by integrating the user strokes in our energy formulation, including constant-reflectance, constant-illumination, and fixed-illumination brushes. Our experimental results demonstrate that the proposed approach achieves a better recovery result of intrinsic reflectance and illumination components than the previous approaches.
引用
收藏
页码:425 / 436
页数:12
相关论文
共 50 条
  • [11] A Review of Intrinsic Image Decomposition
    Liu, Siyuan
    Jiang, Xiaoyue
    Liu, Letian
    Xia, Zhaoqiang
    Dang, Sihang
    Feng, Xiaoyi
    2024 3RD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND MEDIA COMPUTING, ICIPMC 2024, 2024, : 254 - 261
  • [12] Deep Intrinsic Image Decomposition Using Joint Parallel Learning
    Yuan, Yuan
    Sheng, Bin
    Li, Ping
    Bi, Lei
    Kim, Jinman
    Wu, Enhua
    ADVANCES IN COMPUTER GRAPHICS, CGI 2019, 2019, 11542 : 336 - 341
  • [13] Smart Scribbles for Image Matting
    Yang, Xin
    Qiao, Yu
    Chen, Shaozhe
    He, Shengfeng
    Yin, Baocai
    Zhang, Qiang
    Wei, Xiaopeng
    Lau, Rynson W. H.
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 16 (04)
  • [14] Intrinsic Image Decomposition Under Multiple Colored Lighting Conditions Using a Single Image
    Hara, Kakeru
    Isobe, Hiromitsu
    Jinno, Takao
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 578 - 582
  • [15] Intrinsic Image Decomposition: A Comprehensive Review
    Ma, Yupeng
    Feng, Xiaoyi
    Jiang, Xiaoyue
    Xia, Zhaoqiang
    Peng, Jinye
    IMAGE AND GRAPHICS (ICIG 2017), PT I, 2017, 10666 : 626 - 638
  • [16] IDTransformer: Transformer for Intrinsic Image Decomposition
    Das, Partha
    Gevers, Maxime
    Karaoglu, Sezer
    Gevers, Theo
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 816 - 825
  • [17] Pansharpening Based on Intrinsic Image Decomposition
    Kang X.
    Li S.
    Fang L.
    Benediktsson J.A.
    Sensing and Imaging, 2014, 15 (01):
  • [18] Handling Specularity in Intrinsic Image Decomposition
    Muhammad, Siraj
    Dailey, Matthew N.
    Sato, Imari
    Majeed, Muhammad F.
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018), 2018, 10882 : 107 - 115
  • [19] Bayesian Nonparametric Intrinsic Image Decomposition
    Chang, Jason
    Cabezas, Randi
    Fisher, John W., III
    COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 704 - 719
  • [20] White Balancing by Using Multiple Images via Intrinsic Image Decomposition
    Matsuoka, Ryo
    Baba, Tatsuya
    Rizkinia, Mia
    Okuda, Masahiro
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2015, E98D (08): : 1562 - 1570