A note on analyzing nonlinear and nonstationary ocean wave data.

被引:82
|
作者
Hwang, PA [1 ]
Huang, NE
Wang, DW
机构
[1] USN, Res Lab, Div Oceanog, Stennis Space Ctr, MS 39529 USA
[2] NASA, Goddard Space Flight Ctr, Earth Sci Branch, Greenbelt, MD 20770 USA
关键词
nlinear; nonstationary; Huang-Hilbert transformation; empirical mode decomposition; FFT; wavelet; frequency modulation; wave spectrum;
D O I
10.1016/j.apor.2003.11.001
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The Huang-Hilbert transformation (HHT, composed of empirical mode decomposition and Hilbert transformation) can be applied to calculate the spectrum of nonlinear and nonstationary signals. The superior temporal and frequency resolutions of the HHT spectrum are illustrated by several examples in this article. The HHT analysis interprets wave nonlinearity in terms of frequency modulation instead of harmonic generation. The resulting spectrum contains much higher spectral energy at low frequency and sharper drop off at high frequency in comparison with the spectra derived from Fourier-based analysis methods (e.g. FFT and wavelet techniques). For wind generated waves, the spectral level of the Fourier spectrum is about two orders of magnitude smaller than that of the HHT spectrum at the first subharmonic of the peak frequency. The resulting average frequency as defined by the normalized first momentum of the spectrum is about 1.2 times higher in the Fourier-based spectra than that of the HHT spectrum. Published by Elsevier Ltd.
引用
收藏
页码:187 / 193
页数:7
相关论文
共 50 条
  • [31] A tobit variance-component method for analyzing truncated trait data.
    Epstein, MP
    Lin, X
    Boehnke, M
    AMERICAN JOURNAL OF HUMAN GENETICS, 2002, 71 (04) : 452 - 452
  • [32] APPLICATION OF WAVE FIELD CONTINUATION TO THE INVERSION OF REFRACTION DATA.
    McMechan, George A.
    Clayton, Robert W.
    Mooney, Walter D.
    Journal of Geophysical Research, 1982, 87 (B2): : 927 - 935
  • [33] NOTE ON THE DERIVATION OF THE WAVE-EQUATION IN AN INHOMOGENEOUS OCEAN
    GOODMAN, RR
    FARWELL, RW
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1979, 66 (06): : 1895 - 1896
  • [34] NOTE ON COMPUTATION OF OCEAN WAVE ELEMENTS BY CONVOLUTION METHODS
    GROVES, GW
    JOURNAL OF GEOPHYSICAL RESEARCH, 1960, 65 (03): : 997 - 1006
  • [35] Distribution of the nonlinear random ocean wave period
    侯一筠
    李明杰
    宋贵霆
    司广成
    齐鹏
    胡珀
    Journal of Oceanology and Limnology, 2009, (04) : 919 - 923
  • [36] Nonlinear Wave Kinematics near the Ocean Surface
    Smit, P. B.
    Janssen, T. T.
    Herbers, T. H. C.
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2017, 47 (07) : 1657 - 1673
  • [37] Distribution of the nonlinear random ocean wave period
    侯一筠
    李明杰
    宋贵霆
    司广成
    齐鹏
    胡珀
    Chinese Journal of Oceanology and Limnology, 2009, 27 (04) : 919 - 923
  • [38] Nonlinear ocean wave groups with high waves
    Arena, F.
    MARINE TECHNOLOGY AND ENGINEERING, VOL 1, 2011, : 3 - 18
  • [39] Distribution of the nonlinear random ocean wave period
    Yijun Hou
    Mingjie Li
    Guiting Song
    Guangcheng Si
    Peng Qi
    Po Hu
    Chinese Journal of Oceanology and Limnology, 2009, 27 : 919 - 923
  • [40] Distribution of the nonlinear random ocean wave period
    Hou Yijun
    Li Mingjie
    Song Guiting
    Si Guangcheng
    Qi Peng
    Hu Po
    CHINESE JOURNAL OF OCEANOLOGY AND LIMNOLOGY, 2009, 27 (04): : 919 - 923