13C NMR spectroscopy of carbon nanohorns

被引:30
|
作者
Imai, H
Babu, PK
Oldfield, E
Wieckowski, A
Kasuya, D
Azami, T
Shimakawa, Y
Yudasaka, M
Kubo, Y
Iijima, S
机构
[1] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[2] NEC Corp Ltd, Fundamental & Environm Res Labs, Tsukuba, Ibaraki 3058501, Japan
[3] NEC Corp Ltd, SORST, Japan Sci & Technol Agcy, Tsukuba, Ibaraki 3058501, Japan
[4] Meijo Univ, Dept Mat Sci & Technol, Nagoya, Aichi 4688502, Japan
关键词
D O I
10.1103/PhysRevB.73.125405
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report the results of a carbon-13 nuclear magnetic resonance spectroscopic investigation of the structure of carbon nanohorn aggregates (CNHs). The results show that CNHs consist of two components, characterized by different chemical shifts and spin lattice relaxation (T-1) behavior. The first component has a chemical shift of 124 ppm and displays rapid spin-lattice relaxation behavior and is assigned to the nanotubelike horns on the particles' surfaces. The second component has a chemical shift of 116 ppm and much slower spin-lattice relaxation behavior and is assigned to the graphitelike part of the CNH aggregrate. The results of integrated peak area measurements indicate a 1:2 ratio of nanohorns to the graphitelike substrate. The absence of a clear Korringa behavior for the temperature dependence of T-1 and the lack of a Knight shift ruled out any metallic behavior and indicated instead behavior characteristic of semiconductor materials with paramagnetic centers due to structural defects providing an effective relaxation mechanism in the nanohorn domains. We also observed an anomalous change in T-1 near 17 K in the nanohorn domains suggesting the development of an antiferromagnetic correlation between localized electron spins.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Quality control of vegetable oils by 13C NMR spectroscopy
    Zamora, R
    Gómez, G
    Hidalgo, FJ
    MAGNETIC RESONANCE IN FOOD SCIENCE: LATEST DEVELOPMENTS, 2003, (286): : 231 - 238
  • [32] 13C NMR spectroscopy of amorphous hydrogenated boron carbide and amorphous hydrogenated carbon nitride
    Braddock-Wilking, J
    LaManna, J
    Lin, SH
    Feldman, BJ
    SURFACE ENGINEERING: SCIENCE AND TECHNOLOGY I, 1999, : 385 - 393
  • [33] Mobility of asphaltene samples studied by 13C NMR spectroscopy
    Pekerar, S
    Lehmann, T
    Méndez, B
    Acevedo, S
    ENERGY & FUELS, 1999, 13 (02) : 305 - 308
  • [34] 13C CPMAS-NMR spectroscopy for characterization of soil organic carbon in terra rossa
    Valentini, M.
    Margon, A.
    Cozzolino, S.
    Ciampa, A.
    Cantone, P.
    Leita, L.
    AGROCHIMICA, 2018, 62 (03): : 203 - 219
  • [35] Protein solid-state NMR resonance assignments from (13C, 13C) correlation spectroscopy
    Seidel, K
    Lange, A
    Becker, S
    Hughes, CE
    Heise, H
    Baldus, M
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2004, 6 (22) : 5090 - 5093
  • [36] 13C NMR OF TETRAIODOMETHANE
    HOWARTH, OW
    LYNCH, RJ
    MOLECULAR PHYSICS, 1968, 15 (04) : 431 - &
  • [37] 13C NMR of Indazoles
    Elguero, J.
    Fruchier, A.
    El Mostafa Tjiou
    Trofimenko, S.
    Chemistry of Heterocyclic Compounds, 1995, 31 (09):
  • [38] Accurate Quantitative Isotopic 13C NMR Spectroscopy for the Determination of the Intramolecular Distribution of 13C in Glucose at Natural Abundance
    Gilbert, Alexis
    Silvestre, Virginie
    Robins, Richard J.
    Remaud, Gerald S.
    ANALYTICAL CHEMISTRY, 2009, 81 (21) : 8978 - 8985
  • [39] Effect of temperature on polystyrene tacticity through para aromatic carbon splitting in 13C NMR spectroscopy
    Ziaee, Farshid
    Mobarakeh, Hamid Salehi
    Iranian Polymer Journal (English Edition), 2011, 20 (03): : 213 - 221
  • [40] Non-invasive measurements of myocardial carbon metabolism using in vivo 13C NMR spectroscopy
    Ziegler, A
    Zaugg, CE
    Buser, PT
    Seelig, J
    Künnecke, B
    NMR IN BIOMEDICINE, 2002, 15 (03) : 222 - 234