13C NMR spectroscopy of carbon nanohorns

被引:30
|
作者
Imai, H
Babu, PK
Oldfield, E
Wieckowski, A
Kasuya, D
Azami, T
Shimakawa, Y
Yudasaka, M
Kubo, Y
Iijima, S
机构
[1] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[2] NEC Corp Ltd, Fundamental & Environm Res Labs, Tsukuba, Ibaraki 3058501, Japan
[3] NEC Corp Ltd, SORST, Japan Sci & Technol Agcy, Tsukuba, Ibaraki 3058501, Japan
[4] Meijo Univ, Dept Mat Sci & Technol, Nagoya, Aichi 4688502, Japan
关键词
D O I
10.1103/PhysRevB.73.125405
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report the results of a carbon-13 nuclear magnetic resonance spectroscopic investigation of the structure of carbon nanohorn aggregates (CNHs). The results show that CNHs consist of two components, characterized by different chemical shifts and spin lattice relaxation (T-1) behavior. The first component has a chemical shift of 124 ppm and displays rapid spin-lattice relaxation behavior and is assigned to the nanotubelike horns on the particles' surfaces. The second component has a chemical shift of 116 ppm and much slower spin-lattice relaxation behavior and is assigned to the graphitelike part of the CNH aggregrate. The results of integrated peak area measurements indicate a 1:2 ratio of nanohorns to the graphitelike substrate. The absence of a clear Korringa behavior for the temperature dependence of T-1 and the lack of a Knight shift ruled out any metallic behavior and indicated instead behavior characteristic of semiconductor materials with paramagnetic centers due to structural defects providing an effective relaxation mechanism in the nanohorn domains. We also observed an anomalous change in T-1 near 17 K in the nanohorn domains suggesting the development of an antiferromagnetic correlation between localized electron spins.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] 13C NMR spectroscopy of amorphous hydrogenated carbon nitride
    LaManna, J
    Braddock-Wilking, J
    Lin, SH
    Feldman, BJ
    SOLID STATE COMMUNICATIONS, 1999, 109 (09) : 573 - 576
  • [2] 13C NMR spectroscopy of monoterpenoids
    Ferreira, MJP
    Emerenciano, VP
    Linia, GAR
    Romoff, P
    Macari, PAT
    Rodrigues, GV
    PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY, 1998, 33 : 153 - 206
  • [3] Determination of the 13C/12C Carbon Isotope Ratio in Carbonates and Bicarbonates by 13C NMR Spectroscopy
    Pironti, Concetta
    Cucciniello, Raffaele
    Camin, Federica
    Tonon, Agostino
    Motta, Oriana
    Proto, Antonio
    ANALYTICAL CHEMISTRY, 2017, 89 (21) : 11413 - 11418
  • [4] Identification of an Alcohol with 13C NMR Spectroscopy
    Chamberlain, Paul H.
    JOURNAL OF CHEMICAL EDUCATION, 2013, 90 (10) : 1365 - 1367
  • [5] 13C NMR spectroscopy of eudesmane sesquiterpenes
    Oliveira, FC
    Ferreira, MJP
    Núñez, CV
    Rodriguez, GV
    Emerenciano, VP
    PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY, 2000, 37 (1-2) : 1 - 45
  • [6] 13C NMR spectroscopy of amorphous hydrogenated carbon -: further evidence of inhomogeneity
    Braddock-Wilking, J
    Lin, SH
    Feldman, BJ
    SOLID STATE COMMUNICATIONS, 2001, 119 (01) : 19 - 21
  • [7] 13C NMR and EPR of carbon nanofoam
    Blinc, R.
    Cevc, P.
    Arcon, D.
    Zalar, B.
    Zorko, A.
    Apih, T.
    Milia, F.
    Madsen, N. R.
    Christy, A. G.
    Rode, A. V.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (13): : 3069 - 3072
  • [8] Structural Revision and Elucidation of the Biosynthesis of Hypodoratoxide by 13C,13C COSY NMR Spectroscopy
    Barra, Lena
    Ibrom, Kerstin
    Dickschat, Jeroen S.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (22) : 6637 - 6640
  • [9] Quantitative 13C NMR Spectroscopy of Humic Acids
    Novak, Frantisek
    Hrabal, Richard
    CHEMICKE LISTY, 2011, 105 (10): : 752 - 760
  • [10] Saving measurement time in 13C NMR spectroscopy
    Kunikeev, SD
    Taylor, HS
    JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (05): : 743 - 753