Optimal Machine Learning Algorithms for Cyber Threat Detection

被引:11
|
作者
Farooq, Hafiz M. [1 ]
Otaibi, Naif M. [1 ]
机构
[1] Saudi Aramco, Expec Comp Ctr, Informat Secur Div, Dhahran, Saudi Arabia
关键词
SOC; Machine Learning; Anomaly Detection; Prediction; Classification; Numerical Clustering; Dimensionality; Regression; Decision Trees; Ensemble Learning; Deep Learning;
D O I
10.1109/UKSim.2018.00018
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
With the exponential hike in cyber threats, organizations are now striving for better data mining techniques in order to analyze security logs received from their IT infrastructures to ensure effective and automated cyber threat detection. Machine Learning (ML) based analytics for security machine data is the next emerging trend in cyber security, aimed at mining security data to uncover advanced targeted cyber threats actors and minimizing the operational overheads of maintaining static correlation rules. However, selection of optimal machine learning algorithm for security log analytics still remains an impeding factor against the success of data science in cyber security due to the risk of large number of false-positive detections, especially in the case of large-scale or global Security Operations Center (SOC) environments. This fact brings a dire need for an efficient machine learning based cyber threat detection model, capable of minimizing the false detection rates. In this paper, we are proposing optimal machine learning algorithms with their implementation framework based on analytical and empirical evaluations of gathered results, while using various prediction, classification and forecasting algorithms.
引用
收藏
页码:32 / 37
页数:6
相关论文
共 50 条
  • [41] Comparison of Machine Learning Algorithms for Spam Detection
    Sadia, Azeema
    Bashir, Fatima
    Khan, Reema Qaiser
    Bashir, Amna
    Khalid, Ammarah
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2023, 14 (02) : 178 - 184
  • [42] ECG Arrhythmia Detection with Machine Learning Algorithms
    Pandey, Saroj Kumar
    Sodum, Vineetha Reddy
    Janghel, Rekh Ram
    Raj, Anamika
    DATA ENGINEERING AND COMMUNICATION TECHNOLOGY, ICDECT-2K19, 2020, 1079 : 409 - 417
  • [43] Ensemble of Machine Learning Algorithms for Intrusion Detection
    Chou, Te-Shun
    Fan, Jeffrey
    Fan, Sharon
    Makki, Kia
    2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 3976 - +
  • [44] Evaluation of Machine Learning Algorithms for Malware Detection
    Akhtar, Muhammad Shoaib
    Feng, Tao
    SENSORS, 2023, 23 (02)
  • [45] Intrusion detection and prevention with machine learning algorithms
    Chang, Victor
    Boddu, Sreeja
    Xu, Qianwen Ariel
    Doan, Le Minh Thao
    INTERNATIONAL JOURNAL OF GRID AND UTILITY COMPUTING, 2023, 14 (06) : 617 - 631
  • [46] Machine Learning Algorithms In Context Of Intrusion Detection
    Mehmood, Tahir
    Md Rais, Helmi B.
    2016 3RD INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCES (ICCOINS), 2016, : 369 - 373
  • [47] Pothole Detection Using Machine Learning Algorithms
    Al Masud, A. K. M. Jobayer
    Sharin, Saraban Tasnim
    Shawon, Khandokar Farhan Tanvir
    Zaman, Zakia
    2021 15TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ICSPCS), 2021,
  • [48] Cyber Threat Detection and Application Analysis
    Yang, Shuangmao
    Wang, Ji
    Zhang, Jing
    Li, Hao
    2016 INTERNATIONAL CONFERENCE ON CYBER-ENABLED DISTRIBUTED COMPUTING AND KNOWLEDGE DISCOVERY PROCEEDINGS - CYBERC 2016, 2016, : 46 - 49
  • [49] Malware Cyber Threat Intelligence System for Internet of Things (IoT) Using Machine Learning
    Xiao P.
    Journal of Cyber Security and Mobility, 2024, 13 (01): : 53 - 90
  • [50] Internet of Things Cyber Attacks Detection using Machine Learning
    Alsamiri, Jadel
    Alsubhi, Khalid
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (12) : 627 - 634