Nanoparticle self-assembly by a highly stable recombinant spider wrapping silk protein subunit

被引:27
|
作者
Xu, Lingling [1 ,2 ]
Tremblay, Marie-Laurence [2 ]
Orrell, Kathleen E. [2 ]
Leclerc, Jeremie [3 ]
Meng, Qing [1 ]
Liu, Xiang-Qin [2 ]
Rainey, Jan K. [2 ,4 ]
机构
[1] Donghua Univ, Inst Biol Sci & Biotechnol, Shanghai 201620, Peoples R China
[2] Dalhousie Univ, Dept Biochem & Mol Biol, Halifax, NS B3H 4R2, Canada
[3] Univ Laval, PROTEO, Quebec City, PQ G1V 0A6, Canada
[4] Dalhousie Univ, Dept Chem, Halifax, NS B3H 4R2, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Biomaterial; Spider silk protein; Argiope trifasciata AcSp1; Nanoparticle; REPETITIVE DOMAIN; FIBROIN; FLUORESCENCE; MECHANISM; DELIVERY; SEQUENCE; FIBERS; ACSP1; PH;
D O I
10.1016/j.febslet.2013.08.024
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Artificial spider silk proteins may form fibers with exceptional strength and elasticity. Wrapping silk, or aciniform silk, is the toughest of the spider silks, and has a very different protein composition than other spider silks. Here, we present the characterization of an aciniform protein (AcSp1) subunit named W-1, consisting of one AcSp1 199 residue repeat unit from Argiope trifasciata. The structural integrity of recombinant W-1 is demonstrated in a variety of buffer conditions and time points. Furthermore, we show that W-1 has a high thermal stability with reversible denaturation at similar to 71 degrees C and forms self-assembled nanoparticle in near-physiological conditions. W-1 therefore represents a highly stable and structurally robust module for protein-based nanoparticle formation. (C) 2013 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved.
引用
收藏
页码:3273 / 3280
页数:8
相关论文
共 50 条
  • [41] Nanoparticle induced self-assembly
    Helgessen, G.
    Svasand, E.
    Skjeltorp, A. T.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (20)
  • [42] Novel assembly properties of recombinant spider dragline silk proteins
    Huemmerich, D
    Scheibel, T
    Vollrath, F
    Cohen, S
    Gat, U
    Ittah, S
    CURRENT BIOLOGY, 2004, 14 (22) : 2070 - 2074
  • [43] Size and geometry dependent protein-nanoparticle self-assembly
    De, Mrinmoy
    Miranda, Oscar R.
    Rana, Subinoy
    Rotello, Vincent M.
    CHEMICAL COMMUNICATIONS, 2009, (16) : 2157 - 2159
  • [44] Structuring of Functional Spider Silk Wires, Coatings, and Sheets by Self-Assembly on Superhydrophobic Pillar Surfaces
    Gustafsson, Linnea
    Jansson, Ronnie
    Hedhammar, My
    van der Wijngaart, Wouter
    ADVANCED MATERIALS, 2018, 30 (03)
  • [45] Influence of Reaction Conditions on the Self-Assembly of the Natural Silk Sericin Protein
    Li, Wenhua
    Su, Xiuping
    Zhong, Qiwei
    Liu, Zhaogang
    Cai, Yurong
    Yao, Juming
    MICROSCOPY RESEARCH AND TECHNIQUE, 2017, 80 (03) : 298 - 304
  • [46] Flow-Induced Self-Assembly of Spider Silk from Multi-Scale Simulations
    Herrera, Ana M.
    Dasanna, Anil Kumar
    Schwarz, Ulrich S.
    Graeter, Frauke
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 479A - 479A
  • [47] Spider silk self-assembly via modular liquid-liquid phase separation and nanofibrillation
    Malay, Ali D.
    Suzuki, Takehiro
    Katashima, Takuya
    Kono, Nobuaki
    Arakawa, Kazuharu
    Numata, Keiji
    SCIENCE ADVANCES, 2020, 6 (45)
  • [48] Colloidal Properties of Recombinant Spider Silk Protein Particles
    Helfricht, Nicolas
    Doblhofer, Elena
    Duval, Jerome F. L.
    Scheibel, Thomas
    Papastavrou, Georg
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (32): : 18015 - 18027
  • [49] Production of Recombinant Protein Self-Assembly Nanocontainers in a Prokaryotic System
    Ovchinnikova, L. A.
    Terekhov, S. S.
    Filimonova, I. N.
    Kudryaeva, A. A.
    Lomakin, Ya A.
    BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE, 2020, 169 (03) : 383 - 387
  • [50] Production of Recombinant Protein Self-Assembly Nanocontainers in a Prokaryotic System
    L. A. Ovchinnikova
    S. S. Terekhov
    I. N. Filimonova
    A. A. Kudryaeva
    Ya. A. Lomakin
    Bulletin of Experimental Biology and Medicine, 2020, 169 : 383 - 387