Efficiently list-edge coloring multigraphs asymptotically optimally

被引:0
|
作者
Iliopoulos, Fotis [1 ]
Sinclair, Alistair [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
关键词
CHROMATIC INDEX;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give polynomial time algorithms for the seminal results of Kahn [19, 20], who showed that the Goldberg-Seymour and List-Coloring conjectures for (list-)edge coloring multigraphs hold asymptotically. Kahn's arguments are based on the probabilistic method and are non-constructive. Our key insight is that we can combine sophisticated techniques due to Achlioptas, Iliopoulos and Kolmogorov [2] for the analysis of local search algorithms with correlation decay properties of the probability spaces on matchings used by Kahn in order to construct efficient edge-coloring algorithms.
引用
收藏
页码:2319 / 2336
页数:18
相关论文
共 50 条
  • [21] Approximation algorithm for chromatic index and edge-coloring of multigraphs
    Kochol, M
    Krivonáková, N
    Smejová, S
    EXPERIMENTAL AND EFFICIENT ALGORITHMS, PROCEEDINGS, 2005, 3503 : 602 - 605
  • [22] Min sum edge coloring in multigraphs via configuration LP
    Halldorsson, Magnus M.
    Kortsarz, Guy
    Sviridenko, Maxim
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, 2008, 5035 : 359 - +
  • [23] A special f-edge cover-coloring of multigraphs
    Xin Y.
    Liu G.
    Journal of Applied Mathematics and Computing, 2008, 26 (1-2) : 465 - 474
  • [24] Edge-coloring bipartite multigraphs in O(ElogD) time
    Cole, R
    Ost, K
    Schirra, S
    COMBINATORICA, 2001, 21 (01) : 5 - 12
  • [25] ON SUPER f-EDGE COVER-COLORING IN MULTIGRAPHS
    Xu, Changqing
    Liu, Guizhen
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2009, 1 (04) : 531 - 540
  • [26] Acyclic List Edge Coloring of Graphs
    Lai, Hsin-Hao
    Lih, Ko-Wei
    JOURNAL OF GRAPH THEORY, 2013, 72 (03) : 247 - 266
  • [27] List-edge and list-total colorings of graphs embedded on surfaces of negative Euler characteristic
    Wang, Ying
    Wang, Wu
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING, AND INTELLIGENT COMPUTING (CAMMIC 2022), 2022, 12259
  • [28] OPTIMALLY EDGE-COLORING OUTERPLANAR GRAPHS IS IN NC
    GIBBONS, A
    RYTTER, W
    THEORETICAL COMPUTER SCIENCE, 1990, 71 (03) : 401 - 411
  • [29] Edge-coloring of plane multigraphs with many colors on facial cycles
    Czap, Julius
    Jendrol, Stanislav
    Valiska, Juraj
    DISCRETE APPLIED MATHEMATICS, 2020, 282 : 80 - 85
  • [30] AN EFFICIENT ALGORITHM FOR EDGE-COLORING SERIES-PARALLEL MULTIGRAPHS
    ZHOU, X
    NAKANO, S
    SUZUKI, H
    NISHIZEKI, T
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 583 : 516 - 529