Efficiently list-edge coloring multigraphs asymptotically optimally

被引:0
|
作者
Iliopoulos, Fotis [1 ]
Sinclair, Alistair [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
关键词
CHROMATIC INDEX;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give polynomial time algorithms for the seminal results of Kahn [19, 20], who showed that the Goldberg-Seymour and List-Coloring conjectures for (list-)edge coloring multigraphs hold asymptotically. Kahn's arguments are based on the probabilistic method and are non-constructive. Our key insight is that we can combine sophisticated techniques due to Achlioptas, Iliopoulos and Kolmogorov [2] for the analysis of local search algorithms with correlation decay properties of the probability spaces on matchings used by Kahn in order to construct efficient edge-coloring algorithms.
引用
收藏
页码:2319 / 2336
页数:18
相关论文
共 50 条
  • [1] Efficiently list-edge coloring multigraphs asymptotically optimally
    Iliopoulos, Fotis
    Sinclair, Alistair
    RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (04) : 724 - 753
  • [2] Efficiently list-edge coloring multigraphs asymptotically optimally
    Iliopoulos, Fotis
    Sinclair, Alistair
    PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 2319 - 2336
  • [3] Optimal channel assignment with list-edge coloring
    Wang, Huijuan
    Pardalos, Panos M.
    Liu, Bin
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (01) : 197 - 207
  • [4] Optimal channel assignment with list-edge coloring
    Huijuan Wang
    Panos M. Pardalos
    Bin Liu
    Journal of Combinatorial Optimization, 2019, 38 : 197 - 207
  • [5] Edge-coloring of multigraphs
    Kochol, M
    Krivonaková, N
    Smejová, S
    DISCRETE MATHEMATICS, 2005, 300 (1-3) : 229 - 234
  • [6] List star edge-coloring of claw-free subcubic multigraphs
    Cui, Qing
    Han, Zhenmeng
    DISCRETE APPLIED MATHEMATICS, 2022, 309 : 258 - 264
  • [7] Approximating maximum edge coloring in multigraphs
    Feige, U
    Ofek, E
    Wieder, U
    APPROXIMATION ALGORITHMS FOR COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2002, 2462 : 108 - 121
  • [8] APPLICATIONS OF EDGE COLORING OF MULTIGRAPHS TO VERTEX COLORING OF GRAPHS
    KIERSTEAD, HA
    DISCRETE MATHEMATICS, 1989, 74 (1-2) : 117 - 124
  • [9] ON THE 1.1 EDGE-COLORING OF MULTIGRAPHS
    NISHIZEKI, T
    KASHIWAGI, K
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (03) : 391 - 410
  • [10] List edge and list total colourings of multigraphs
    Borodin, OV
    Kostochka, AV
    Woodall, DR
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 71 (02) : 184 - 204