Observation of a continuous phase transition in a shape-memory alloy

被引:27
|
作者
Lashley, J. C. [1 ]
Shapiro, S. M. [2 ]
Winn, B. L. [3 ]
Opeil, C. P. [4 ]
Manley, M. E. [5 ]
Alatas, A. [6 ]
Ratcliff, W. [7 ]
Park, T. [1 ,8 ]
Fisher, R. A. [1 ]
Mihaila, B. [1 ]
Riseborough, P. [9 ]
Salje, E. K. H. [10 ]
Smith, J. L. [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Brookhaven Natl Lab, Upton, NY 11973 USA
[3] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[4] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA
[5] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[6] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
[7] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA
[8] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea
[9] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA
[10] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England
基金
美国能源部;
关键词
D O I
10.1103/PhysRevLett.101.135703
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Elastic neutron-scattering, inelastic x-ray scattering, specific-heat, and pressure-dependent electrical transport measurements have been made on single crystals of AuZn and Au(0.52)Zn(0.48). Elastic neutron scattering detects new commensurate Bragg peaks (modulation) appearing at Q = (1.33, 0.67, 0) at temperatures corresponding to each sample's transition temperature (T(M) = 64 and 45 K, respectively). Although the new Bragg peaks appear in a discontinuous manner in the Au(0.52)Zn(0.48) sample, they appear in a continuous manner in AuZn. Surprising us, the temperature dependence of the AuZn Bragg peak intensity and the specific-heat jump near T(M) are in favorable accord with a continuous transition. A fit to the pressure dependence of T(M) suggests the presence of a critical end point in the AuZn phase diagram located at T(M)* = 2.7 K and p* = 3.1 GPa.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] The TiNi shape-memory alloy and its applications for MEMS
    Kahn, H
    Huff, MA
    Heuer, AH
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 1998, 8 (03) : 213 - 221
  • [42] Indentation and two-way shape memory in a NiTi polycrystalline shape-memory alloy
    Su, J. F.
    Huang, W. M.
    Hong, M. H.
    SMART MATERIALS & STRUCTURES, 2007, 16 (01): : S137 - S144
  • [43] Stability of a cylindrical shell made of a shape-memory alloy
    Sil'chenko L.G.
    Movchan A.A.
    Sil'chenko T.L.
    International Applied Mechanics, 2014, 50 (2) : 171 - 178
  • [44] HYDROGEN SOLUBILITY AND DIFFUSION IN THE SHAPE-MEMORY ALLOY NITI
    SCHMIDT, R
    SCHLERETH, M
    WIPF, H
    ASSMUS, W
    MULLNER, M
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (14) : 2473 - 2482
  • [45] THE MICROSTRUCTURAL MODEL OF MECHANICAL BEHAVIOR OF A SHAPE-MEMORY ALLOY
    Mishustin, I. V.
    Movchan, A. A.
    NANOSCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL, 2016, 7 (01) : 77 - 95
  • [46] Melting and fabrication of NiTi shape-memory alloy wires
    Wang, LM
    Liu, LH
    Yang, H
    Wang, LY
    Xiu, GQ
    SHAPE MEMORY MATERIALS AND ITS APPLICATIONS, 2001, 394-3 : 297 - 300
  • [47] TRAINING AND AGING EFFECTS ON SHAPE-MEMORY BEHAVIOR IN A 2-PHASE NIALFE ALLOY
    YANG, JH
    WAYMAN, CM
    MATERIALS LETTERS, 1993, 16 (05) : 254 - 259
  • [48] Locally resonant metamaterials with shape-memory alloy springs
    de Sousa, Vagner Candido
    Sugino, Christopher
    De Marqui Junior, Carlos
    Erturk, Alper
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS XII, 2018, 10595
  • [49] Shape-memory and superelasticity in CuZnSn alloy and its application
    Miura, S
    SHAPE MEMORY MATERIALS AND ITS APPLICATIONS, 2001, 394-3 : 399 - 402
  • [50] Characterization of defects in a martensitic CuAlNi shape-memory alloy
    S. Van Petegem
    D. Segers
    V. Pelosin
    J. Kuriplach
    Applied Physics A, 2005, 81 : 1039 - 1044