Observation of a continuous phase transition in a shape-memory alloy

被引:27
|
作者
Lashley, J. C. [1 ]
Shapiro, S. M. [2 ]
Winn, B. L. [3 ]
Opeil, C. P. [4 ]
Manley, M. E. [5 ]
Alatas, A. [6 ]
Ratcliff, W. [7 ]
Park, T. [1 ,8 ]
Fisher, R. A. [1 ]
Mihaila, B. [1 ]
Riseborough, P. [9 ]
Salje, E. K. H. [10 ]
Smith, J. L. [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Brookhaven Natl Lab, Upton, NY 11973 USA
[3] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[4] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA
[5] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[6] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
[7] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA
[8] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea
[9] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA
[10] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England
基金
美国能源部;
关键词
D O I
10.1103/PhysRevLett.101.135703
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Elastic neutron-scattering, inelastic x-ray scattering, specific-heat, and pressure-dependent electrical transport measurements have been made on single crystals of AuZn and Au(0.52)Zn(0.48). Elastic neutron scattering detects new commensurate Bragg peaks (modulation) appearing at Q = (1.33, 0.67, 0) at temperatures corresponding to each sample's transition temperature (T(M) = 64 and 45 K, respectively). Although the new Bragg peaks appear in a discontinuous manner in the Au(0.52)Zn(0.48) sample, they appear in a continuous manner in AuZn. Surprising us, the temperature dependence of the AuZn Bragg peak intensity and the specific-heat jump near T(M) are in favorable accord with a continuous transition. A fit to the pressure dependence of T(M) suggests the presence of a critical end point in the AuZn phase diagram located at T(M)* = 2.7 K and p* = 3.1 GPa.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Phase Transition of Shape-memory Effect in Glassy Shape-memory Polymers
    Lu, Haibao
    BEHAVIOR AND MECHANICS OF MULTIFUNCTIONAL MATERIALS AND COMPOSITES 2013, 2013, 8689
  • [2] The stability of a plate of shape-memory alloy in a direct thermoelastic phase transition
    Movchan, AA
    Sil'Chenko, LG
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2004, 68 (01): : 53 - 64
  • [3] MICROSTRUCTURAL AND PHASE ANALYSIS OF CuAlNi SHAPE-MEMORY ALLOY AFTER CONTINUOUS CASTING
    Gojic, Mirko
    Kozuh, Stjepan
    Anzel, Ivan
    Lojen, Gorazd
    Ivanic, Ivana
    Kosec, Borut
    MATERIALI IN TEHNOLOGIJE, 2013, 47 (02): : 149 - 152
  • [4] THE INTERMEDIATE PHASE OF THE SHAPE-MEMORY ALLOY NITI
    TIETZE, H
    MULLNER, M
    SELGERT, P
    ASSMUS, W
    JOURNAL OF PHYSICS F-METAL PHYSICS, 1985, 15 (02): : 263 - 271
  • [5] Shape-memory alloy
    不详
    INDUSTRIAL ROBOT, 2001, 28 (02): : 157 - 158
  • [6] NEW SHAPE-MEMORY ALLOY
    Revels, Michelle
    Cutting Tool Engineering, 2022, 74 (10):
  • [7] Constrained phase-transformation of a TiNi shape-memory alloy
    Li, Y
    Cui, LS
    Xu, HB
    Yang, DZ
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2003, 34 (02): : 219 - 223
  • [8] A study of the corrosion resistance and shape-memory effect of FeMnSiCrNiCo shape-memory alloy
    Dong, ZZ
    Liu, WX
    Wang, DF
    Chen, JM
    Liu, DZ
    SHAPE MEMORY MATERIALS AND ITS APPLICATIONS, 2001, 394-3 : 435 - 438
  • [9] Constrained phase-transformation of a TiNi shape-memory alloy
    Y. Li
    H. B. Xu
    L. S. Cui
    D. Z. Yang
    Metallurgical and Materials Transactions A, 2003, 34 : 219 - 223
  • [10] A lightweight shape-memory magnesium alloy
    Ogawa, Yukiko
    Ando, Daisuke
    Sutou, Yuji
    Koike, Junichi
    SCIENCE, 2016, 353 (6297) : 368 - 370