Pushing for Weighted Tree Automata

被引:0
|
作者
Maletti, Andreas [1 ]
Quernheim, Daniel [1 ]
机构
[1] Univ Stuttgart, Inst Maschinelle Sprachverarbeitung, D-70174 Stuttgart, Germany
关键词
BISIMULATION MINIMIZATION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Explicit pushing for weighted tree automata over semifields is introduced. A careful selection of the pushing weights allows a normalization of bottom-up deterministic weighted tree automata. Automata in the obtained normal form can be minimized by a simple transformation into an unweighted automaton followed by unweighted minimization. This generalizes results of Mohri and Eisner for deterministic weighted string automata to the tree case. Moreover, the new strategy can also be used to test equivalence of two bottom-up deterministic weighted tree automata M-1 and M-2 in time O(vertical bar M vertical bar log vertical bar Q vertical bar), where vertical bar M vertical bar = vertical bar M-1 vertical bar + vertical bar M-2 vertical bar and vertical bar Q vertical bar is the sum of the number of states of M-1 and M-2. This improves the previously best running time O(vertical bar M-1 vertical bar . vertical bar M-2 vertical bar) .
引用
收藏
页码:460 / 471
页数:12
相关论文
共 50 条
  • [31] A Kleene Theorem for Weighted Tree Automata over Tree Valuation Monoids
    Droste, Manfred
    Fueloep, Zoltan
    Goetze, Doreen
    LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS, LATA 2016, 2016, 9618 : 452 - 463
  • [32] A Kleene theorem for weighted tree automata over tree valuation monoids
    Goetze, Doreen
    Fulop, Zoltan
    Droste, Manfred
    INFORMATION AND COMPUTATION, 2019, 269
  • [33] Linear weighted tree automata with storage and inverse linear tree homomorphisms
    Herrmann, Luisa
    INFORMATION AND COMPUTATION, 2021, 281
  • [34] Kleene's theorem for weighted tree-automata
    Pech, C
    FUNDAMENTALS OF COMPUTATION THEORY, PROCEEDINGS, 2003, 2751 : 387 - 399
  • [35] Hyper-Minimization for Deterministic Weighted Tree Automata
    Maletti, Andreas
    Quernheim, Daniel
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2014, (151): : 314 - 326
  • [36] Low-Rank Approximation of Weighted Tree Automata
    Rabusseau, Guillaume
    Balle, Borja
    Cohen, Shay B.
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 839 - 847
  • [37] From generic partition refinement to weighted tree automata minimization
    Wissmann, Thorsten
    Deifel, Hans-Peter
    Milius, Stefan
    Schroeder, Lutz
    FORMAL ASPECTS OF COMPUTING, 2021, 33 (4-5) : 695 - 727
  • [38] A Theorem on Supports of Weighted Tree Automata Over Strong Bimonoids
    Ghorani, Maryam
    Vogler, Heiko
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2023, 19 (02) : 579 - 594
  • [39] Crisp-determinization of weighted tree automata over strong bimonoids
    Fulop, Zoltan
    Koszo, David
    Vogler, Heiko
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2021, 23 (01):
  • [40] Nona-Tree Weighted Finite Automata Compression of Simple Images
    Lakhavijitlert, T.
    Prachumrak, K.
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 14, 2006, 14 : 370 - 374