Anode electrode with carbon buffer layer for improving methanol oxidation reaction in direct methanol fuel cell

被引:16
|
作者
Kang, Yun Sik [1 ,2 ]
Jung, Namgee [3 ]
Choi, Kwang-Hyun [1 ,2 ]
Lee, Myeong Jae [1 ,2 ]
Ahn, Minjeh [1 ,2 ]
Cho, Yong-Hun [4 ]
Sung, Yung-Eun [1 ,2 ]
机构
[1] Inst for Basic Sci Korea, Ctr Nanoparticle Res, Seoul 151742, South Korea
[2] Seoul Natl Univ, Sch Chem & Biol Engn, Seoul 151742, South Korea
[3] Korea Inst Sci & Technol, Fuel Cell Res Ctr, Seoul 136791, South Korea
[4] Kookmin Univ, Coll Engn, Sch Adv Mat Engn, Seoul 136702, South Korea
关键词
Direct methanol fuel cell (DMFC); Anode structure; Carbon buffer layer; Methanol crossover; COMPOSITE ANODE; CROSSOVER; PERFORMANCE; MEMBRANES; MEA; TRANSPORT; WATER;
D O I
10.1016/j.apsusc.2013.11.059
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An anode electrode with the carbon buffer layer is fabricated to increase the performance of direct methanol fuel cell (DMFC). The carbon buffer layer is located in the middle of the anode catalyst layers, consists of porous carbon and Nafion ionomer. Since the porous and relatively hydrophilic carbon buffer layer absorbs methanol, the flux of the methanol solution in the anode electrode can be controlled. And methanol crossover is decreased by the effect of the carbon buffer layer. Consequently, methanol can be oxidized more efficiently and the performance of DMFC increases. Therefore, the membrane electrode assembly (MEA) with the carbon buffer layer on the anode electrode exhibits higher open circuit voltage (OCV) and maximum power density compared to those of conventional MEA. Especially with 3.0 M methanol solution, the maximum power density is increased by similar to 60%. (C) 2013 Elsevier B. V. All rights reserved.
引用
收藏
页码:246 / 251
页数:6
相关论文
共 50 条
  • [21] A review of anode catalysis in the direct methanol fuel cell
    Liu, HS
    Song, CJ
    Zhang, L
    Zhang, JJ
    Wang, HJ
    Wilkinson, DP
    [J]. JOURNAL OF POWER SOURCES, 2006, 155 (02) : 95 - 110
  • [22] Novel anode structure for the direct methanol fuel cell
    Allen, RG
    Lim, C
    Yang, LX
    Scott, K
    Roy, S
    [J]. JOURNAL OF POWER SOURCES, 2005, 143 (1-2) : 142 - 149
  • [23] Transient analysis of a Direct Methanol fuel cell anode
    Adloor, Sai Darshan
    Krishnamurthy, Balaji
    [J]. ELECTROCHIMICA ACTA, 2016, 191 : 317 - 328
  • [24] Simplified model for the direct methanol fuel cell anode
    Shivhare, M. R.
    Jackson, C. L.
    Scott, K.
    Martin, E. B.
    [J]. JOURNAL OF POWER SOURCES, 2007, 173 (01) : 240 - 248
  • [25] Multifunctional catalysts toward methanol oxidation in direct methanol fuel cell
    Zahra Yavari
    Meissam Noroozifar
    Mozhgan Khorasani-Motlagh
    [J]. Journal of Applied Electrochemistry, 2015, 45 : 439 - 451
  • [26] Multifunctional catalysts toward methanol oxidation in direct methanol fuel cell
    Yavari, Zahra
    Noroozifar, Meissam
    Khorasani-Motlagh, Mozhgan
    [J]. JOURNAL OF APPLIED ELECTROCHEMISTRY, 2015, 45 (05) : 439 - 451
  • [27] Electrocatalytic performance of Pt/Ru/Sn/W fullerene electrode for methanol oxidation in direct methanol fuel cell
    Mohammad Karimi
    Forouzan Aboufazeli
    Hamid Reza Lotfi Zadeh Zhad
    Omid Sadeghi
    Ezzatollah Najafi
    [J]. 燃料化学学报., 2013, 41 (01) - 95
  • [28] A catalytic gas diffusion layer for improving the efficiency of a direct methanol fuel cell
    Tsai, Ming-Chi
    Yeh, Tsung-Kuang
    Chen, Charn-Ying
    Tsai, Chuen-Horng
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (09) : 2299 - 2303
  • [29] Mass transport optimization in the anode diffusion layer of a micro direct methanol fuel cell
    Yuan, Zhenyu
    Yang, Jie
    Zhang, Yufeng
    Wang, Shikai
    Xu, Tingnian
    [J]. ENERGY, 2015, 93 : 599 - 605
  • [30] The effect of PtRuW ternary electrocatalysts on methanol oxidation reaction in direct methanol fuel cells
    Dae Kyu Kang
    Chang Soo Noh
    Sang Tae Park
    Jung Min Sohn
    Seung Kon Kim
    Young-Kwon Park
    [J]. Korean Journal of Chemical Engineering, 2010, 27 : 802 - 806