Time-Varying Data Visualization Using Clustered Heatmap and Dual Scatterplots

被引:9
|
作者
Kumatani, Satsuki [1 ]
Itoh, Takayuki [1 ]
Motohashi, Yousuke [2 ]
Umezu, Keisuke [2 ]
Takatsuka, Masahiro [3 ]
机构
[1] Ochanomizu Univ, Tokyo, Japan
[2] NEC Corp Ltd, Tokyo, Japan
[3] Univ Sydney, Sydney, NSW 2006, Australia
关键词
Time-varying data visualization; Heatmap; Scatterplot; Clustering;
D O I
10.1109/IV.2016.50
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Heatmap is one of the effective representations for time-varying data visualization. It may require large display spaces when an input dataset contains large number of data items or time steps. We may often want mechanisms to interactively filter non-important data items or time steps, so that we can form appropriate sizes of heatmaps and focus on important data items or time steps. This paper presents a heatmap-based time-varying data visualization technique featuring an interactive mechanism to display meaningful data items and time steps. This technique firstly calculates distances between arbitrary pairs of data items, and constructs a dendrogram consisting the data items. It then generates clusters of the data items and displays the data items belonging to the specified sizes of clusters in the heatmap, so that we can focus on groups of similar or correlated data items. It applies a similar mechanism to a set of time steps so that we can remove outlier time steps from the heatmap. Our implementation features two scatterplots, which represent distribution of data items and time steps respectively, and slider widgets to interactively adjust the thresholds of the clustering process. We can intuitively understand how clusters of data items or time steps are constructed, by looking at the scatterplots while operating the sliders.
引用
收藏
页码:63 / 68
页数:6
相关论文
共 50 条
  • [21] Wavelet-based Visualization of Time-Varying Data on Graphs
    Valdivia, Paola
    Dias, Fabio
    Petronetto, Fabiano
    Silva, Claudio T.
    Nonato, L. G.
    2015 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY, 2015, : 1 - 8
  • [22] Time and Streak Surfaces for Flow Visualization in Large Time-Varying Data Sets
    Krishnan, Hari
    Garth, Christoph
    Joy, Kenneth I.
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2009, 15 (06) : 1267 - 1274
  • [23] Time-varying volume visualization: a survey
    Bai, Zhihui
    Tao, Yubo
    Lin, Hai
    JOURNAL OF VISUALIZATION, 2020, 23 (05) : 745 - 761
  • [24] Time-varying volume visualization: a survey
    Zhihui Bai
    Yubo Tao
    Hai Lin
    Journal of Visualization, 2020, 23 : 745 - 761
  • [25] VIMTEX: A Visualization Interface for Multivariate, Time-Varying, Geological Data Exploration
    Dasgupta, A.
    Kosara, R.
    Gosink, L.
    COMPUTER GRAPHICS FORUM, 2015, 34 (03) : 341 - 350
  • [26] Visualization and Exploration of Temporal Trend Relationships in Multivariate Time-Varying Data
    Lee, Teng-Yok
    Shen, Han-Wei
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2009, 15 (06) : 1359 - 1366
  • [27] Correlation Visualization of Time-Varying Patterns for Multi-Variable Data
    Zhang, Huijie
    Hou, Yafeng
    Qu, Dezhan
    Liu, Quanle
    IEEE ACCESS, 2016, 4 : 4669 - 4677
  • [28] Evaluation of illustration-inspired techniques for time-varying data visualization
    Joshi, Alark
    Rheingans, Penny
    COMPUTER GRAPHICS FORUM, 2008, 27 (03) : 999 - 1006
  • [29] WireVis: Visualization of categorical, time-varying data from financial transactions
    Chang, Remco
    Ghoniem, Mohammad
    Kosara, Robert
    Ribarsky, William
    Yang, Jing
    Suma, Evan
    Ziemkiewicz, Caroline
    Kern, Daniel
    Sudjianto, Agus
    VAST: IEEE SYMPOSIUM ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY 2007, PROCEEDINGS, 2007, : 155 - +
  • [30] Illustrative visualization of time-varying features in spatio-temporal data
    Wu, Xiangyang
    Chen, Zixi
    Gu, Yuhui
    Chen, Weiru
    Fang, Mei-e
    JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2018, 48 : 157 - 168