Multivalent guiding functions in the bifurcation problem of differential inclusions

被引:4
|
作者
Kornev, Sergey [1 ]
Liou, Yeong-Cheng [2 ,3 ,4 ]
机构
[1] Voronezh State Pedag Univ, Fac Math & Phys, Lenina 86, Voronezh 394043, Russia
[2] Kaohsiung Med Univ, Dept Healthcare Adm & Med Informat, Kaohsiung 807, Taiwan
[3] Kaohsiung Med Univ, Res Ctr Nonlinear Anal & Optimizat, Kaohsiung 807, Taiwan
[4] Kaohsiung Med Univ, Ctr Fundamental Sci, Kaohsiung 807, Taiwan
来源
基金
俄罗斯科学基金会;
关键词
Differential inclusion; bifurcation of periodic solution; multivalent guiding function; topological degree;
D O I
10.22436/jnsa.009.08.12
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we use the multivalent guiding functions method to study the bifurcation problem for differential inclusions with convex-valued right-hand part satisfying the upper Caratheodory and the sublinear growth conditions. (C) 2016 all rights reserved.
引用
收藏
页码:5259 / 5270
页数:12
相关论文
共 50 条
  • [41] On differential inclusions in uniform spaces of functions
    Baskakov, A. G.
    Obukhovskii, V. V.
    Pietro, Zecca
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2006, (03): : 7 - 8
  • [42] Subclasses of meromorphically multivalent functions defined by a differential operator
    Orhan, Halit
    Raducanu, Dorina
    Deniz, Erhan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (04) : 966 - 979
  • [43] Multivalent Functions and Differential Operator Extended by the Quantum Calculus
    Hadid, Samir B.
    Ibrahim, Rabha W.
    Momani, Shaher
    FRACTAL AND FRACTIONAL, 2022, 6 (07)
  • [44] Applications of Differential Subordination to Certain Subclass of Multivalent Functions
    Aghalary, Rasoul
    Wang, Zhi-Gang
    KYUNGPOOK MATHEMATICAL JOURNAL, 2009, 49 (02): : 265 - 281
  • [45] On some differential inequalities for multivalent starlike and convex functions
    Jurasinska, Renata
    Nunokawa, Mamoru
    Sokol, Janusz
    BULLETIN DES SCIENCES MATHEMATIQUES, 2020, 161
  • [46] CLASSES OF MULTIVALENT ANALYTICAL FUNCTIONS SOLVING THE GILBERT PROBLEM
    AKSENTEV, LA
    ZORIN, IA
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1991, (12): : 77 - 80
  • [47] A global bifurcation theorem for convex-valued differential inclusions
    Domachowski, S
    Gulgowski, J
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2004, 23 (02): : 275 - 292
  • [48] On the global bifurcation of periodic solutions of differential inclusions in Hilbert spaces
    Nguyen Van Loi
    Obukhovskii, Valeri
    Zecca, Pietro
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 76 : 80 - 92
  • [49] On the Converse Safety Problem for Differential Inclusions: Solutions, Regularity, and Time-Varying Barrier Functions
    Maghenem, Mohamed
    Sanfelice, Ricardo G.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (01) : 172 - 187
  • [50] Smooth Lyapunov functions for homogeneous differential inclusions
    Nakamura, H
    Yamashita, Y
    Nishitani, H
    SICE 2002: PROCEEDINGS OF THE 41ST SICE ANNUAL CONFERENCE, VOLS 1-5, 2002, : 1974 - 1979