Immobilization of Detonation Nanodiamonds on Macroscopic Surfaces

被引:5
|
作者
Balakin, Sascha [1 ,2 ,3 ,4 ]
Dennison, Nicholas R. [3 ,4 ]
Klemmed, Benjamin [5 ]
Spohn, Juliane [3 ,4 ]
Cuniberti, Gianaurelio [1 ,2 ,6 ,7 ]
Roemhildt, Lotta [3 ,4 ]
Opitz, Joerg [1 ,2 ,3 ,4 ]
机构
[1] Tech Univ Dresden, Inst Mat Sci, D-01062 Dresden, Germany
[2] Tech Univ Dresden, Max Bergmann Ctr Biomat, D-01062 Dresden, Germany
[3] Fraunhofer Inst Ceram Technol & Syst IKTS Mat Dia, D-01109 Dresden, Germany
[4] Fraunhofer Inst Ceram Technol & Syst IKTS Mat Dia, D-04103 Leipzig, Germany
[5] Tech Univ Dresden, Phys Chem, D-01062 Dresden, Germany
[6] Tech Univ Dresden, Dresden Ctr Computat Mat Sci, D-01062 Dresden, Germany
[7] Tech Univ Dresden, Ctr Advancing Elect Dresden, D-01062 Dresden, Germany
来源
APPLIED SCIENCES-BASEL | 2019年 / 9卷 / 06期
关键词
detonation nanodiamonds; bio-conjugation; de-agglomeration; fluorescent microscopy; nanoindentation; TITANIUM IMPLANTS; ANODIC-OXIDATION; DIAMOND FILMS; COVALENT; PARTICLE; GROWTH;
D O I
10.3390/app9061064
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Detonation nanodiamonds (NDs) are a novel class of carbon-based nanomaterials, and have received a great deal of attention in biomedical applications, due to their high biocompatibility, facile surface functionalization, and commercialized synthetic fabrication. We were able to transfer the NDs from large-size agglomerate suspensions to homogenous coatings. ND suspensions have been used in various techniques to coat on commercially available substrates of pure Ti and Si. Scanning electron microscopy (SEM) imaging and nanoindentation show that the densest and strongest coating of NDs was generated when using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide (EDC/NHS)-mediated coupling to macroscopic silanized surfaces. In the next step, the feasibility of DNA-mediated coupling of NDs on macroscopic surfaces is discussed using fluorescent microscopy and additional particle size distribution, as well as zeta potential measurements. This work compares different ND coating strategies and describes the straightforward technique of grafting single-stranded DNA onto carboxylated NDs via thioester bridges.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Specific features of synthesis of detonation nanodiamonds
    Danilenko, VV
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2005, 41 (05) : 577 - 588
  • [22] The influence of detonation synthesis conditions on surface properties of detonation nanodiamonds
    A. P. Voznyakovskii
    V. Yu. Dolmatov
    F. A. Shumilov
    Journal of Superhard Materials, 2014, 36 : 165 - 170
  • [23] Detonation and shock synthesis of nanodiamonds.
    Donnet, JB
    Lemoigne, C
    Wang, TK
    Peng, CM
    Samirant, M
    Eckhardt, A
    BULLETIN DE LA SOCIETE CHIMIQUE DE FRANCE, 1997, 134 (10-11): : 875 - 890
  • [24] Electrical properties of aggregated detonation nanodiamonds
    Bevilacqua, Mose
    Patel, Sameer
    Chaudhary, Aysha
    Ye, Haitao
    Jackman, Richard B.
    APPLIED PHYSICS LETTERS, 2008, 93 (13)
  • [25] Oxidation of detonation nanodiamonds in a reactive formulation
    Comet, Marc
    Pichot, Vincent
    Schnell, Fabien
    Spitzer, Denis
    DIAMOND AND RELATED MATERIALS, 2014, 47 : 35 - 39
  • [26] Electrical properties of monodispersed detonation nanodiamonds
    Chaudhary, Aysha
    Welch, Joseph O.
    Jackman, Richard B.
    APPLIED PHYSICS LETTERS, 2010, 96 (24)
  • [27] Detonation nanodiamonds: Synthesis, properties and applications
    1600, Royal Society of Chemistry (2014-January):
  • [28] Detonation Nanodiamonds as Promising Drug Carriers
    Yakovlev, R. Yu
    Mingalev, P. G.
    Leonidov, N. B.
    Lisichkin, G. V.
    PHARMACEUTICAL CHEMISTRY JOURNAL, 2020, 54 (04) : 389 - 403
  • [29] Model of Polymer Reinforcement With Detonation Nanodiamonds
    Voznyakovskii, A. P.
    Prokoshev, A. O.
    JOURNAL OF MACROMOLECULAR SCIENCE PART B-PHYSICS, 2013, 52 (12): : 1811 - 1817
  • [30] Interaction of Polymethine Dyes with Detonation Nanodiamonds
    Ishchenko, Alexander A.
    Mchedlov-Petrossyan, Nikolay O.
    Kriklya, Nika N.
    Kryshtal, Aleksandr P.
    Osawa, Eiji
    Kulinich, Andrii V.
    CHEMPHYSCHEM, 2019, 20 (08) : 1028 - 1035