Pseudofinite groups with NIP theory and definability in finite simple groups

被引:11
|
作者
Macpherson, Dugald [1 ]
Tent, Katrin [2 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Munster, Math Inst, D-48149 Munster, Germany
来源
GROUPS AND MODEL THEORY | 2012年 / 576卷
基金
英国工程与自然科学研究理事会;
关键词
Pseudofinite group; NIP theory; word map; WORD MAPS; FIELDS; FORKING;
D O I
10.1090/conm/576/11352
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any pseudofinite group with NIP theory and with a finite upper bound on the length of chains of centralisers is soluble-by-finite. In particular, any NIP rosy pseudofinite group is soluble-by-finite. This generalises, and shortens the proof of, an earlier result for stable pseudofinite groups. An example is given of an NIP pseudofinite group which is not soluble-by-finite. However, if C is a class of finite groups such that all infinite ultraproducts of members of C have NIP theory, then there is a bound on the index of the soluble radical of any member of C. We also survey some ways in which model theory gives information on families of finite simple groups, particularly concerning products of images of word maps.
引用
收藏
页码:255 / +
页数:3
相关论文
共 50 条
  • [42] GROUPS WHICH ARE PRODUCTS OF FINITE SIMPLE-GROUPS
    WALLS, GL
    ARCHIV DER MATHEMATIK, 1988, 50 (01) : 1 - 4
  • [43] Finite simple 3′-groups are cyclic or Suzuki groups
    Toborg, Imke
    Waldecker, Rebecca
    ARCHIV DER MATHEMATIK, 2014, 102 (04) : 301 - 312
  • [44] Periodic Groups Saturated with Finite Simple Symplectic Groups
    Wang, Zh.
    Guo, W.
    Lytkina, D. V.
    Mazurov, V. D.
    ALGEBRA AND LOGIC, 2024, 63 (02) : 98 - 104
  • [45] On finite groups isospectral to simple symplectic and orthogonal groups
    A. V. Vasil’ev
    M. A. Grechkoseeva
    V. D. Mazurov
    Siberian Mathematical Journal, 2009, 50 : 965 - 981
  • [46] On the automorphism groups of Cayley graphs of finite simple groups
    Fang, XG
    Praeger, CE
    Wang, J
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 : 563 - 578
  • [47] THIN FINITE SIMPLE GROUPS
    ASCHBACHER, M
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 82 (03) : 484 - 484
  • [48] DETERMINING FINITE SIMPLE GROUPS
    ASCHBACHER, M
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (05): : A522 - A522
  • [49] Finite simple 3′-groups are cyclic or Suzuki groups
    Imke Toborg
    Rebecca Waldecker
    Archiv der Mathematik, 2014, 102 : 301 - 312
  • [50] Fuchsian groups, finite simple groups and representation varieties
    Martin W. Liebeck
    Aner Shalev
    Inventiones mathematicae, 2005, 159 : 317 - 367