A quantum d-dimensional random-field XY ferromagnet

被引:0
|
作者
Ma, YQ [1 ]
机构
[1] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China
关键词
phase transition; XY model;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Ne propose a soluble quantum spherical XY ferromagnet with a random field in the boson space. We obtain a general expression of the critical temperature T-c below which the ordered ferromagnet phase appears. The Imry-Ma result concerning the lower critical dimension d(c) = 4 is recovered, and the critical exponents near the critical temperature T-c are calculated. We show that the random-field fluctuations rather than the quantum fluctuations dominate the phase transition and critical behavior of the system. The entropy vanishes as T-d/2 at low temperatures, contrary to the classical spherical model.
引用
收藏
页码:537 / 542
页数:6
相关论文
共 50 条
  • [31] Quantum transport in d-dimensional lattices
    Manzano, Daniel
    Chuang, Chern
    Cao, Jianshu
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [32] Behavior of the random-field XY model on simple cubic lattices at hr=1.5
    Fisch, Ronald
    PHYSICAL REVIEW E, 2020, 101 (06)
  • [33] RANDOM CIRCLES IN THE D-DIMENSIONAL UNIT BALL
    AFFENTRANGER, F
    JOURNAL OF APPLIED PROBABILITY, 1989, 26 (02) : 408 - 412
  • [34] Universality in four-dimensional random-field magnets
    Fytas, Nikolaos G.
    Theodorakis, Panagiotis E.
    EUROPEAN PHYSICAL JOURNAL B, 2015, 88 (08):
  • [35] On the random sequential adsorption of d-dimensional cubes
    Bonnier, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (49): : 10757 - 10762
  • [36] Universality in three dimensional random-field ground states
    Hartmann, AK
    Nowak, U
    EUROPEAN PHYSICAL JOURNAL B, 1999, 7 (01): : 105 - 109
  • [37] Universality in four-dimensional random-field magnets
    Nikolaos G. Fytas
    Panagiotis E. Theodorakis
    The European Physical Journal B, 2015, 88
  • [38] AN ANALYSIS OF RANDOM D-DIMENSIONAL QUAD TREES
    DEVROYE, L
    LAFOREST, L
    SIAM JOURNAL ON COMPUTING, 1990, 19 (05) : 821 - 832
  • [39] Random-field random surfaces
    Dario, Paul
    Harel, Matan
    Peled, Ron
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 186 (1-2) : 91 - 158
  • [40] Random-field random surfaces
    Paul Dario
    Matan Harel
    Ron Peled
    Probability Theory and Related Fields, 2023, 186 : 91 - 158