FAST QMC MATRIX-VECTOR MULTIPLICATION

被引:7
|
作者
Dick, Josef [1 ]
Kuo, Frances Y. [1 ]
Le Gia, Quoc T. [1 ]
Schwab, Christoph [2 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] ETH, Seminar Appl Math, CH-8092 Zurich, Switzerland
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2015年 / 37卷 / 03期
基金
澳大利亚研究理事会; 瑞士国家科学基金会; 欧洲研究理事会;
关键词
quasi-Monte Carlo; fast Fourier transform; lattice rule; polynomial lattice rule; Korobov p-set; high-dimensional integration; PDEs with random input; BY-COMPONENT CONSTRUCTION; RANK-1 LATTICE RULES; QUASI-MONTE-CARLO; INTEGRATION;
D O I
10.1137/151005518
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Quasi-Monte Carlo (QMC) rules 1/N Sigma(N-1)(n=0) f(y(n)A) can be used to approximate integrals of the form integral([0,1]s) f(yA) dy, where A is a matrix and y is a row vector. This type of integral arises, for example, from the simulation of a normal distribution with a general covariance matrix, from the approximation of the expectation value of solutions of PDEs with random coefficients, or from applications from statistics. In this paper we design QMC quadrature points y(0), . . ., y(N-1) is an element of [0, 1](s) such that for the matrix Y = (y(0)(inverted perpendicular), . . ., y(N-1)(inverted perpendicular))(inverted perpendicular) whose rows are the quadrature points, one can use the fast Fourier transform to compute the matrix-vector product Y a(inverted perpendicular), a is an element of R-s, in O(N log N) operations and at most 2(s - 1) extra additions. The proposed method can be applied to lattice rules, polynomial lattice rules, and a certain type of Korobov p-set and even works if the point set y(0), . . ., y(N-1) is transformed to another domain U subset of R-s by a coordinatewise mapping phi which is the same in each coordinate. The approach is illustrated computationally by three numerical experiments. The first test considers the generation of points with normal distribution and a general covariance matrix, the second test applies QMC to high-dimensional, affine-parametric, elliptic PDEs with uniformly distributed random coefficients, and the third test addresses finite element discretizations of elliptic PDEs with high-dimensional, log-normal random input data. All numerical tests show a significant speedup of the computation times of the fast QMC matrix method compared to a conventional implementation as the dimension becomes large.
引用
收藏
页码:A1436 / A1450
页数:15
相关论文
共 50 条
  • [31] Sparse Matrix-Vector Multiplication on a Reconfigurable Supercomputer
    DuBois, David
    DuBois, Andrew
    Connor, Carolyn
    Poole, Steve
    PROCEEDINGS OF THE SIXTEENTH IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, 2008, : 239 - +
  • [32] Understanding the performance of sparse matrix-vector multiplication
    Goumas, Georgios
    Kourtis, Kornilios
    Anastopoulos, Nikos
    Karakasis, Vasileios
    Koziris, Nectarios
    PROCEEDINGS OF THE 16TH EUROMICRO CONFERENCE ON PARALLEL, DISTRIBUTED AND NETWORK-BASED PROCESSING, 2008, : 283 - +
  • [33] Node aware sparse matrix-vector multiplication
    Bienz, Amanda
    Gropp, William D.
    Olson, Luke N.
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2019, 130 : 166 - 178
  • [34] A Method of Zero/One Matrix-Vector Multiplication
    Yu, Li
    Liu, Xia
    Chen, Ang
    Li, Yuan-Xiang
    PROCEEDINGS OF FIRST INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION, VOL III: MODELLING AND SIMULATION IN ELECTRONICS, COMPUTING, AND BIO-MEDICINE, 2008, : 95 - 99
  • [35] AN EFFICIENT PARALLEL ALGORITHM FOR MATRIX-VECTOR MULTIPLICATION
    HENDRICKSON, B
    LELAND, R
    PLIMPTON, S
    INTERNATIONAL JOURNAL OF HIGH SPEED COMPUTING, 1995, 7 (01): : 73 - 88
  • [36] STRUCTURED SPARSE MATRIX-VECTOR MULTIPLICATION ON A MASPAR
    DEHN, T
    EIERMANN, M
    GIEBERMANN, K
    SPERLING, V
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1994, 74 (06): : T534 - T538
  • [37] GPU accelerated sparse matrix-vector multiplication and sparse matrix-transpose vector multiplication
    Tao, Yuan
    Deng, Yangdong
    Mu, Shuai
    Zhang, Zhenzhong
    Zhu, Mingfa
    Xiao, Limin
    Ruan, Li
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2015, 27 (14): : 3771 - 3789
  • [38] The Mailman algorithm: A note on matrix-vector multiplication
    Liberty, Edo
    Zucker, Steven W.
    INFORMATION PROCESSING LETTERS, 2009, 109 (03) : 179 - 182
  • [39] Performance Aspects of Sparse Matrix-Vector Multiplication
    Simecek, I.
    ACTA POLYTECHNICA, 2006, 46 (03) : 3 - 8
  • [40] A REUSABLE SYSTOLIC ARRAY FOR MATRIX-VECTOR MULTIPLICATION
    EVANS, DJ
    MARGARITIS, KG
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1991, 41 (1-2) : 19 - 30