A sparse multiresolution stochastic approximation for uncertainty quantification

被引:5
|
作者
Schiavazzi, D. [1 ]
Doostan, A.
Iaccarino, G.
机构
[1] Univ Padua, Dipartimento Matemat, I-35100 Padua, Italy
关键词
DIFFERENTIAL-EQUATIONS; POLYNOMIAL CHAOS;
D O I
10.1090/conm/586/11634
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present work proposes a novel sampling-based uncertainty propagation framework in which solutions are represented using a multiresolution dictionary. The coefficients of such an expansion are evaluated using greedy methodologies within the Compressive Sampling framework. The effect of various sampling strategies is investigated. The proposed methodology is verified on the Kraichnan-Orszag problem with one and two random initial conditions.
引用
下载
收藏
页码:295 / +
页数:3
相关论文
共 50 条
  • [31] Spectral stochastic uncertainty quantification in chemical systems
    Reagan, MT
    Najm, HN
    Debusschere, BJ
    Le Maître, OP
    Knio, M
    Ghanem, RG
    COMBUSTION THEORY AND MODELLING, 2004, 8 (03) : 607 - 632
  • [32] UNCERTAINTY QUANTIFICATION AND STOCHASTIC VARIATIONS OF RENEWABLE FUELS
    Montomoli, F.
    Insinna, M.
    Cappelletti, A.
    Salvadori, S.
    ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2015, VOL 4B, 2015,
  • [33] SPECIAL ISSUE ON UNCERTAINTY QUANTIFICATION AND STOCHASTIC MODELING
    Beck, Andre T.
    Trindade, Marcelo A.
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2013, 3 (06) : VII - VIII
  • [34] Comparison of Stochastic Sampling Algorithms for Uncertainty Quantification
    Mohamed, Linah
    Christie, Mike
    Demyanov, Vasily
    SPE JOURNAL, 2010, 15 (01): : 31 - 38
  • [35] A distributed stochastic approximation algorithm for stochastic LQ control with unknown uncertainty
    Zhang, Zhaorong
    Xu, Juanjuan
    Li, Xun
    AUTOMATICA, 2023, 151
  • [36] An approximation approach for uncertainty quantification using evidence theory
    Bae, HR
    Grandhi, RV
    Canfield, RA
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2004, 86 (03) : 215 - 225
  • [37] Efficient Laplace Approximation for Bayesian Registration Uncertainty Quantification
    Wang, Jian
    Wells, William M., III
    Golland, Polina
    Zhang, Miaomiao
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I, 2018, 11070 : 880 - 888
  • [38] UNCERTAINTY QUANTIFICATION AND WEAK APPROXIMATION OF AN ELLIPTIC INVERSE PROBLEM
    Dashti, M.
    Stuart, A. M.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) : 2524 - 2542
  • [39] Quantification of uncertainty in zero-flow pressure approximation
    Prignon, Martin
    Dawans, Arnaud
    van Moeseke, Geoffrey
    INTERNATIONAL JOURNAL OF VENTILATION, 2021, 20 (3-4) : 248 - 257
  • [40] Selection of polynomial chaos bases via Bayesian model uncertainty methods with applications to sparse approximation of PDEs with stochastic inputs
    Karagiannis, Georgios
    Lin, Guang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 259 : 114 - 134