Low-dose CT Image Denoising Using Classification Densely Connected Residual Network

被引:17
|
作者
Ming, Jun [1 ]
Yi, Benshun [1 ]
Zhang, Yungang [1 ]
机构
[1] Wuhan Univ, Sch Elect Informat, Wuhan 430072, Peoples R China
关键词
low-dose CT; image denoising; convolutional neural network; dense connection; residual learning; X-RAY CT; REDUCTION; NOISE;
D O I
10.3837/tiis.2020.06.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Considering that high-dose X-ray radiation during CT scans may bring potential risks to patients, in the medical imaging industry there has been increasing emphasis on low-dose CT. Due to complex statistical characteristics of noise found in low-dose CT images, many traditional methods are difficult to preserve structural details effectively while suppressing noise and artifacts. Inspired by the deep learning techniques, we propose a densely connected residual network (DCRN) for low-dose CT image noise cancelation, which combines the ideas of dense connection with residual learning. On one hand, dense connection maximizes information flow between layers in the network, which is beneficial to maintain structural details when denoising images. On the other hand, residual learning paired with batch normalization would allow for decreased training speed and better noise reduction performance in images. The experiments are performed on the 100 CT images selected from a public medical dataset-TCIA(The Cancer Imaging Archive). Compared with the other three competitive denoising algorithms, both subjective visual effect and objective evaluation indexes which include PSNR, RMSE, MAE and SSIM show that the proposed network can improve LDCT images quality more effectively while maintaining a low computational cost. In the objective evaluation indexes, the highest PSNR 33.67, RMSE 5.659, MAE 1.965 and SSIM 0.9434 are achieved by the proposed method. Especially for RMSE, compare with the best performing algorithm in the comparison algorithms, the proposed network increases it by 7 percentage points.
引用
收藏
页码:2480 / 2496
页数:17
相关论文
共 50 条
  • [31] Low-dose CT reconstruction with simultaneous sinogram and image domain denoising by deep neural network
    Zhu, Jiongtao
    Su, Ting
    Deng, Xiaolei
    Sun, Xindong
    Zheng, Hairong
    Liang, Dong
    Ge, Yongshuai
    MEDICAL IMAGING 2020: PHYSICS OF MEDICAL IMAGING, 2020, 11312
  • [32] RHLNet: Robust Hybrid Loss-Based Network for Low-Dose CT Image Denoising
    Saidulu, Naragoni
    Muduli, Priya Ranjan
    Dasgupta, Anirban
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 1
  • [33] LOW-DOSE CT DENOISING USING A STRUCTURE-PRESERVING KERNEL PREDICTION NETWORK
    Xu, Lu
    Zhang, Yuwei
    Liu, Ying
    Wang, Daoye
    Zhou, Mu
    Ren, Jimmy
    Wei, Jingwei
    Ye, Zhaoxiang
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1639 - 1643
  • [34] UNet with ResNextify and IB modules for low-dose CT image denoising
    Chauhan S.
    Malik N.
    Vig R.
    International Journal of Information Technology, 2024, 16 (7) : 4677 - 4692
  • [35] Low-Dose CT Image Denoising with a Residual Multi-scale Feature Fusion Convolutional Neural Network and Enhanced Perceptual Loss
    Mazandarani, Farzan Niknejad
    Babyn, Paul
    Alirezaie, Javad
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2024, 43 (04) : 2533 - 2559
  • [36] Low-Dose CT Image Denoising with a Residual Multi-scale Feature Fusion Convolutional Neural Network and Enhanced Perceptual Loss
    Farzan Niknejad Mazandarani
    Paul Babyn
    Javad Alirezaie
    Circuits, Systems, and Signal Processing, 2024, 43 : 2533 - 2559
  • [37] A multi-attention Uformer for low-dose CT image denoising
    Huimin Yan
    Chenyun Fang
    Zhiwei Qiao
    Signal, Image and Video Processing, 2024, 18 : 1429 - 1442
  • [38] Separation-based model for low-dose CT image denoising
    Chen, Wenbin
    Bai, Junjie
    Gu, Xiaohua
    Li, Yuyan
    Shao, Yanling
    Zhang, Quan
    Liu, Yi
    Liu, Yanli
    Gui, Zhiguo
    JOURNAL OF ENGINEERING-JOE, 2020, 2020 (12): : 1198 - 1208
  • [39] A Novel Total Variation Model for Low-Dose CT Image Denoising
    Chen, Wenbin
    Shao, Yanling
    Wang, Yanling
    Zhang, Quan
    Liu, Yi
    Yao, Linhong
    Chen, Yan
    Yang, Guanru
    Gui, Zhiguo
    IEEE ACCESS, 2018, 6 : 78892 - 78903
  • [40] A multi-attention Uformer for low-dose CT image denoising
    Yan, Huimin
    Fang, Chenyun
    Qiao, Zhiwei
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (02) : 1429 - 1442