WEAK COMPACTNESS OF BIHARMONIC MAPS

被引:0
|
作者
Zheng, Shenzhou [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
关键词
Biharmonic maps; conservation law; weak compactness; PARTIAL REGULARITY; CONSERVATION-LAWS; SINGULAR SET; THEOREM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article shows that if a sequence of weak solutions of a perturbed biharmonic map satisfies Phi(k) -> 0 in (W-2,W-2)* and u(k) -> u weakly in W-2,W-2, then u is a biharmonic map. In particular, we show that the space of biharmonic maps is sequentially compact under the weak-W-2,W-2 topology.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Remarks on biharmonic maps into spheres
    Changyou Wang
    Calculus of Variations and Partial Differential Equations, 2004, 21 : 221 - 242
  • [32] Neck analysis for biharmonic maps
    Liu, Lei
    Yin, Hao
    MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (3-4) : 807 - 834
  • [33] HARMONIC AND BIHARMONIC MAPS AT IASI
    Balmus, A.
    Fetcu, D.
    Oniciuc, C.
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2010, 56 (01): : 81 - 96
  • [34] Energy quantization for biharmonic maps
    Laurain, Paul
    Riviere, Tristan
    ADVANCES IN CALCULUS OF VARIATIONS, 2013, 6 (02) : 191 - 216
  • [35] PERSPECTIVES ON BIHARMONIC MAPS AND SUBMANIFOLDS
    Balmus, A.
    DIFFERENTIAL GEOMETRY, 2009, : 257 - 265
  • [36] BIHARMONIC WAVE MAPS INTO SPHERES
    Herr, Sebastian
    Lamm, Tobias
    Schnaubelt, Roland
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (02) : 787 - 796
  • [37] Remarks on the nonexistence of biharmonic maps
    Luo, Yong
    ARCHIV DER MATHEMATIK, 2016, 107 (02) : 191 - 200
  • [38] Neck analysis for biharmonic maps
    Lei Liu
    Hao Yin
    Mathematische Zeitschrift, 2016, 283 : 807 - 834
  • [39] Remarks on biharmonic maps into spheres
    Wang, CY
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2004, 21 (03) : 221 - 242
  • [40] Some Results of Biharmonic Maps
    FENG Shu-xiang
    PAN Hong
    数学季刊(英文版), 2016, 31 (01) : 19 - 26