Heavy points of a d-dimensional simple random walk

被引:5
|
作者
Csáki, E
Földes, A
Révész, P
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1364 Budapest, Hungary
[2] CUNY Coll Staten Isl, Dept Mat Sci, Staten Isl, NY 10314 USA
[3] Vienna Tech Univ, Inst Stat & Wahrscheinlichkeitstheorie, A-1040 Vienna, Austria
关键词
local time; simple random walk in d-dimension; strong theorems;
D O I
10.1016/j.spl.2005.07.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a simple symmetric random walk in dimension d >=,3, a uniform strong law of large numbers is proved for the number of sites with given local time up to time n. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:45 / 57
页数:13
相关论文
共 50 条
  • [11] Linear and Fisher Separability of Random Points in the d-dimensional Spherical Layer
    Sidorov, S., V
    Zolotykh, N. Yu
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [12] Large deviation probabilities for the range of a d-dimensional supercritical branching random walk
    Zhang, Shuxiong
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 462
  • [13] On the behavior of random walk around heavy points
    Csaki, Endre
    Foeldes, Antonia
    Revesz, Pal
    JOURNAL OF THEORETICAL PROBABILITY, 2007, 20 (04) : 1041 - 1057
  • [14] On the Behavior of Random Walk Around Heavy Points
    Endre Csáki
    Antónia Földes
    Pál Révész
    Journal of Theoretical Probability, 2007, 20 : 1041 - 1057
  • [15] GEOMETRIC STRUCTURES OF LATE POINTS OF A TWO-DIMENSIONAL SIMPLE RANDOM WALK
    Okada, Izumi
    ANNALS OF PROBABILITY, 2019, 47 (05): : 2869 - 2893
  • [16] RANDOM POLYTOPES IN THE D-DIMENSIONAL CUBE
    FUREDI, Z
    DISCRETE & COMPUTATIONAL GEOMETRY, 1986, 1 (04) : 315 - 319
  • [17] Random Volumes in d-dimensional Polytopes
    Frieze, Alan
    Pegden, Wesley
    Tkocz, Tomasz
    DISCRETE ANALYSIS, 2020,
  • [18] Lattice points in d-dimensional spherical segments
    Ortiz Ramirez, Martin
    MONATSHEFTE FUR MATHEMATIK, 2021, 194 (01): : 167 - 179
  • [19] Lattice points in d-dimensional spherical segments
    Martin Ortiz Ramirez
    Monatshefte für Mathematik, 2021, 194 : 167 - 179
  • [20] Critical points of D-dimensional extended gravities
    Deser, S.
    Liu, Haishan
    Lue, H.
    Pope, C. N.
    Sisman, Tahsin Cagri
    Tekin, Bayram
    PHYSICAL REVIEW D, 2011, 83 (06):