Quantum systems with time-dependent boundaries

被引:12
|
作者
Di Martino, Sara [1 ]
Facchi, Paolo [2 ,3 ]
机构
[1] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
[2] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy
[3] INFN, Sez Bari, I-70126 Bari, Italy
关键词
Quantum boundary conditions; time-dependent Hamiltonians; product formulae;
D O I
10.1142/S0219887815600038
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present here a set of lecture notes on quantum systems with time-dependent boundaries. In particular, we analyze the dynamics of a non-relativistic particle in a bounded domain of physical space, when the boundaries are moving or changing. In all cases, unitarity is preserved and the change of boundaries does not introduce any decoherence in the system.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] ON THE CLASSICAL-QUANTUM CORRESPONDENCE FOR PERIODICALLY TIME-DEPENDENT SYSTEMS
    HOLTHAUS, M
    CHAOS SOLITONS & FRACTALS, 1995, 5 (07) : 1143 - 1167
  • [32] Spectral modeling and propagation schemes for time-dependent quantum systems
    Chen, Z.
    Polizzi, E.
    2010 14TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ELECTRONICS (IWCE 2010), 2010, : 295 - 298
  • [33] Quantum averaging. III. Time-dependent systems
    Scherer, W
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (05) : 2597 - 2634
  • [34] Evolution of quantum systems with a scaling type time-dependent Hamiltonians
    Samaj, L
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2002, 16 (26): : 3909 - 3914
  • [35] Open Quantum Systems Coupled to Time-Dependent Classical Environments
    Osmanov, Maksym
    Oettinger, Hans Christian
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2013, 34 (07) : 1255 - 1264
  • [36] Absorption and injection models for open time-dependent quantum systems
    Traversa, F. L.
    Zhan, Z.
    Oriols, X.
    PHYSICAL REVIEW E, 2014, 90 (02):
  • [37] Poincare-vonZeipel algorithmfor time-dependent quantum systems
    Scherer, W
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 494 - 498
  • [38] Time-dependent quantum graph
    Matrasulov, D. U.
    Yusupov, J. R.
    Sabirov, K. K.
    Sobirov, Z. A.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2015, 6 (02): : 173 - 181
  • [39] Time-dependent generalized Gibbs ensembles in open quantum systems
    Lange, Florian
    Lenarcic, Zala
    Rosch, Achim
    PHYSICAL REVIEW B, 2018, 97 (16)
  • [40] Consistent Treatment of Quantum Systems with a Time-Dependent Hilbert Space
    Mostafazadeh, Ali
    ENTROPY, 2024, 26 (04)