On prolongations of valuations via Newton polygons and liftings of polynomials

被引:22
|
作者
Khanduja, Sudesh K. [1 ]
Kumar, Sanjeev [2 ]
机构
[1] Indian Inst Sci Educ & Res IISER Mohali, Sas Nagar 140306, Punjab, India
[2] Panjab Univ, Dept Math, Chandigarh 160014, India
关键词
TRANSCENDENTAL EXTENSIONS; THEOREM;
D O I
10.1016/j.jpaa.2012.03.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let v be a real valuation of a field K with valuation ring R-v. Let K(theta) be a finite separable extension of K with theta integral over R, and F (x) be the minimal polynomial of theta over K. Using Newton polygons and residually transcendental prolongations of v to a simple transcendental extension K (x) of K together with liftings with respect to such prolongations, we describe a method to determine all prolongations of v to K(theta) along with their residual degrees and ramification indices over v. The problem is classical but our approach uses new ideas. The paper gives an analogue of Ore's Theorem when the base field is an arbitrary rank-1 valued field and extends the main result of [S.D Cohen, A. Movahhedi, A. Salinier, Factorization over local fields and the irreducibility of generalized difference polynomials, Mathematika 47 (2000) 173-196]. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2648 / 2656
页数:9
相关论文
共 50 条
  • [31] Brasselet number and Newton polygons
    Thaís M. Dalbelo
    Luiz Hartmann
    manuscripta mathematica, 2020, 162 : 241 - 269
  • [32] Brasselet number and Newton polygons
    Dalbelo, Thais M.
    Hartmann, Luiz
    MANUSCRIPTA MATHEMATICA, 2020, 162 (1-2) : 241 - 269
  • [33] Newton polygons and curve gonalities
    Wouter Castryck
    Filip Cools
    Journal of Algebraic Combinatorics, 2012, 35 : 345 - 366
  • [34] Newton polygons of Hecke operators
    Chiriac, Liubomir
    Jorza, Andrei
    ANNALES MATHEMATIQUES DU QUEBEC, 2021, 45 (02): : 271 - 290
  • [35] Newton polygons as lattice points
    Chai, CL
    AMERICAN JOURNAL OF MATHEMATICS, 2000, 122 (05) : 967 - 990
  • [36] Newton polygons and curve gonalities
    Castryck, Wouter
    Cools, Filip
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2012, 35 (03) : 345 - 366
  • [37] Okutsu invariants and Newton polygons
    Guardia, Jordi
    Montes, Jesus
    Nart, Enric
    ACTA ARITHMETICA, 2010, 145 (01) : 83 - 108
  • [38] Purity of the stratification by Newton polygons
    De Jong, AJ
    Oort, F
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (01) : 209 - 241
  • [39] ORTHOGONAL POLYNOMIALS FOR MODIFIED VALUATIONS
    LOCHER, F
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1989, 69 (04): : T79 - T81
  • [40] Common valuations of division polynomials
    Naskrecki, Bartosz
    Verzobio, Matteo
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,