Low-Light Image Enhancement With Regularized Illumination Optimization and Deep Noise Suppression

被引:36
|
作者
Guo, Yu [1 ]
Lu, Yuxu [2 ]
Liu, Ryan Wen [2 ]
Yang, Meifang [2 ]
Chui, Kwok Tai [3 ]
机构
[1] Wuhan Univ Technol, Sch Transportat, Wuhan 430063, Peoples R China
[2] Wuhan Univ Technol, Sch Nav, Hubei Key Lab Inland Shipping Technol, Wuhan 430063, Peoples R China
[3] Open Univ Hong Kong, Sch Sci & Technol, Dept Technol, Hong Kong, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷 / 145297-145315期
基金
中国国家自然科学基金;
关键词
Lighting; Image enhancement; Histograms; Noise reduction; Visualization; Imaging; Image quality; Low-light image enhancement; image restoration; Retinex theory; illumination optimization; noise suppression; HISTOGRAM EQUALIZATION; VARIATIONAL FRAMEWORK; REAL-TIME; CONVERGENCE; RETINEX; BLOCKS; MODEL;
D O I
10.1109/ACCESS.2020.3015217
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Maritime images captured under low-light imaging condition easily suffer from low visibility and unexpected noise, leading to negative effects on maritime traffic supervision and management. To promote imaging performance, it is necessary to restore the important visual information from degraded low-light images. In this article, we propose to enhance the low-light images through regularized illumination optimization and deep noise suppression. In particular, a hybrid regularized variational model, which combines L0-norm gradient sparsity prior with structure-aware regularization, is presented to refine the coarse illumination map originally estimated using Max-RGB. The adaptive gamma correction method is then introduced to adjust the refined illumination map. Based on the assumption of Retinex theory, a guided filter-based detail boosting method is introduced to optimize the reflection map. The adjusted illumination and optimized reflection maps are finally combined to generate the enhanced maritime images. To suppress the effect of unwanted noise on imaging performance, a deep learning-based blind denoising framework is further introduced to promote the visual quality of enhanced image. In particular, this framework is composed of two sub-networks, i.e., E-Net and D-Net adopted for noise level estimation and non-blind noise reduction, respectively. The main benefit of our image enhancement method is that it takes full advantage of the regularized illumination optimization and deep blind denoising. Comprehensive experiments have been conducted on both synthetic and realistic maritime images to compare our proposed method with several state-of-the-art imaging methods. Experimental results have illustrated its superior performance in terms of both quantitative and qualitative evaluations.
引用
收藏
页码:145297 / 145315
页数:19
相关论文
共 50 条
  • [31] Low-light image enhancement based on multi-illumination estimation
    Feng, Xiaomei
    Li, Jinjiang
    Hua, Zhen
    Zhang, Fan
    APPLIED INTELLIGENCE, 2021, 51 (07) : 5111 - 5131
  • [32] Joint semantic-aware and noise suppression for low-light image enhancement without reference
    Zhang, Meng
    Liu, Lidong
    Jiang, Donghua
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (07) : 3847 - 3855
  • [33] Joint semantic-aware and noise suppression for low-light image enhancement without reference
    Meng Zhang
    Lidong Liu
    Donghua Jiang
    Signal, Image and Video Processing, 2023, 17 : 3847 - 3855
  • [34] Low-light image enhancement based on multi-illumination estimation
    Xiaomei Feng
    Jinjiang Li
    Zhen Hua
    Fan Zhang
    Applied Intelligence, 2021, 51 : 5111 - 5131
  • [35] Fractal pyramid low-light image enhancement network with illumination information
    Sun, Ting
    Fan, Guodong
    Gan, Min
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)
  • [36] Simultaneous enhancement and noise reduction of a single low-light image
    Zhang, Liang
    Shen, Peiyi
    Peng, Xilu
    Zhu, Guangming
    Song, Juan
    Wei, Wei
    Song, Houbing
    IET IMAGE PROCESSING, 2016, 10 (11) : 840 - 847
  • [37] A Deep Convolutional Neural Network-based Low-light Image Enhancement Using Illumination Map
    Wang, Liqian
    Shao, Wenze
    Ge, Qi
    ELEVENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2019), 2020, 11373
  • [38] SCENS: Simultaneous Contrast Enhancement and Noise Suppression for Low-Light Images
    He, Renjie
    Guan, Mingyang
    Wen, Changyun
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (09) : 8687 - 8697
  • [39] A deep Retinex network for underwater low-light image enhancement
    Ji, Kai
    Lei, Weimin
    Zhang, Wei
    MACHINE VISION AND APPLICATIONS, 2023, 34 (06)
  • [40] RetinexDIP: A Unified Deep Framework for Low-Light Image Enhancement
    Zhao, Zunjin
    Xiong, Bangshu
    Wang, Lei
    Ou, Qiaofeng
    Yu, Lei
    Kuang, Fa
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (03) : 1076 - 1088