Monte Carlo simulation study of electron yields from compound semiconductor materials

被引:29
|
作者
Hussain, A. [1 ,2 ]
Yang, L. H. [1 ,2 ]
Zou, Y. B. [3 ]
Mao, S. F. [4 ]
Da, B. [5 ]
Li, H. M. [6 ]
Ding, Z. J. [1 ,2 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China
[3] Xinjiang Normal Univ, Sch Phys & Elect Engn, Urumqi 830054, Xinjiang, Peoples R China
[4] Univ Sci & Technol China, Dept Engn & Appl Phys, Hefei 230026, Anhui, Peoples R China
[5] Natl Inst Mat Sci, Ctr Mat Res Informat Integrat CMI2, Res & Serv Div Mat Data & Integrated Syst MaDIS, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
[6] Univ Sci & Technol China, Super Computat Ctr, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
MEAN FREE PATHS; SECONDARY-ELECTRON; OPTICAL-PROPERTIES; ATOMIC-NUMBER; ENERGY-DISTRIBUTION; ELEMENTAL SOLIDS; THIN-FILMS; SCATTERING; EMISSION; IMAGES;
D O I
10.1063/5.0012154
中图分类号
O59 [应用物理学];
学科分类号
摘要
A systematic study has been performed based on a Monte Carlo simulation for the investigation of secondary electron yields, backscattering coefficients, and total electron yields for eight compound semiconductor materials, i.e., AlN, TiN, VN, VC, GaAs, InAs, InSb, and PbS, at different incident electron energies in the range 0.1-10keV. Our Monte Carlo simulation model is based on the Mott cross section for electron elastic scattering as calculated by a partial wave method and a dielectric functional approach to electron inelastic scattering with the full Penn algorithm. We used Palik's optical data for lower photon energies below 100 eVs and Henke's data for higher photon energies. The cascade production of secondary electrons in electron inelastic scattering and low energy is included in the simulation. The simulated results of electron backscattering coefficients are compared with the experimental data available in the literature. Considering the fact that the experimental data for these compound materials are not available, we have compared them with experimental data for elements having the nearest mean atomic numbers. The simulation predicted much larger backscattering coefficient values than the empirical Staub formula.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Monte Carlo simulation study of scanning Auger electron images
    Li, Y. G.
    Ding, Z. J.
    Zhang, Z. M.
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 106 (02)
  • [12] Monte Carlo simulation study of electron interaction with solids and surfaces
    Ding, ZJ
    Salma, K
    Li, HM
    Zhang, ZM
    Tokesi, K
    Varga, D
    Toth, J
    Goto, K
    Shimizu, R
    [J]. SURFACE AND INTERFACE ANALYSIS, 2006, 38 (04) : 657 - 663
  • [13] Wigner Monte Carlo simulation of phonon-induced electron decoherence in semiconductor nanodevices
    Querlioz, Damien
    Saint-Martin, Jerome
    Bournel, Arnaud
    Dollfus, Philippe
    [J]. PHYSICAL REVIEW B, 2008, 78 (16):
  • [14] Monte Carlo simulation for the electron cascade due to gamma rays in semiconductor radiation detectors
    Narayan, Raman D.
    Miranda, Ryan
    Rez, Peter
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 111 (06)
  • [15] Mixed Monte Carlo simulation of electron backscattering from solids
    Zhuo, Jun
    Huang, Liuxing
    Niu, Shengli
    Zhu, Jinhui
    [J]. Jisuan Wuli/Chinese Journal of Computational Physics, 2010, 27 (06): : 805 - 810
  • [16] Monte Carlo simulation of electron thermalization in scintillator materials: Implications for scintillator nonproportionality
    Prange, Micah P.
    Xie, YuLong
    Campbell, Luke W.
    Gao, Fei
    Kerisit, Sebastien
    [J]. JOURNAL OF APPLIED PHYSICS, 2017, 122 (23)
  • [17] MONTE-CARLO SIMULATION OF SEMICONDUCTOR-DEVICES
    JENSEN, GU
    LUND, B
    FJELDLY, TA
    SHUR, M
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1991, 67 (01) : 1 - 61
  • [18] Theory of the Monte Carlo method for semiconductor device simulation
    Kosina, H
    Nedjalkov, M
    Selberherr, S
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2000, 47 (10) : 1898 - 1908
  • [19] The backward Monte Carlo method for semiconductor device simulation
    Kampl, Markus
    Kosina, Hans
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2018, 17 (04) : 1492 - 1504
  • [20] Monte Carlo simulation of the growth of semiconductor quantum wires
    Mitin, V
    Kersulis, S
    [J]. MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1996, 37 (1-3): : 17 - 24