Three Nontrivial Solutions for Kirchhoff-Type Variational-Hemivariational Inequalities

被引:1
|
作者
Chu, Jifeng [1 ]
Gharehgazlouei, Fariba [2 ]
Heidarkhani, Shapour [2 ]
Solimaninia, Arezoo [2 ]
机构
[1] Hohai Univ, Coll Sci, Dept Math, Nanjing 210098, Jiangsu, Peoples R China
[2] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
基金
中国国家自然科学基金;
关键词
Multiple solutions; Kirchhoff type variational-hemivariational inequality; critical point theory; variational methods; CRITICAL-POINTS THEOREM; NON-DIFFERENTIABLE FUNCTIONALS; BOUNDARY-VALUE-PROBLEMS;
D O I
10.1007/s00025-014-0423-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the existence of three distinct nontrivial solutions for a nonlocal perturbed Kirchhoff-type variational-hemivariational inequalities. The proof is based on three critical point theorems for non-smooth functional due to Bonanno and Winkert.
引用
收藏
页码:71 / 91
页数:21
相关论文
共 50 条
  • [31] General Comparison Principle for Variational-Hemivariational Inequalities
    Siegfried Carl
    Patrick Winkert
    [J]. Journal of Inequalities and Applications, 2009
  • [32] Numerical analysis of stationary variational-hemivariational inequalities
    Weimin Han
    Mircea Sofonea
    David Danan
    [J]. Numerische Mathematik, 2018, 139 : 563 - 592
  • [33] Optimal Control of Elliptic Variational-Hemivariational Inequalities
    Peng, Zijia
    Kunisch, Karl
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 178 (01) : 1 - 25
  • [34] Numerical analysis of stationary variational-hemivariational inequalities
    Han, Weimin
    Sofonea, Mircea
    Danan, David
    [J]. NUMERISCHE MATHEMATIK, 2018, 139 (03) : 563 - 592
  • [35] Minimization arguments in analysis of variational-hemivariational inequalities
    Sofonea, Mircea
    Han, Weimin
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01):
  • [36] Existence and comparison results for variational-hemivariational inequalities
    S Carl
    [J]. Journal of Inequalities and Applications, 2005
  • [37] A Fixed Point Approach of Variational-Hemivariational Inequalities
    Hu, Rong
    Sofonea, Mircea
    Xiao, Yi-Bin
    [J]. CARPATHIAN JOURNAL OF MATHEMATICS, 2022, 38 (03) : 573 - 581
  • [38] Decay mild solutions of Hilfer fractional differential variational-hemivariational inequalities
    Pang, Xia
    Li, Xiuwen
    Liu, Zhenhai
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 71
  • [39] General Comparison Principle for Variational-Hemivariational Inequalities
    Carl, Siegfried
    Winkert, Patrick
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
  • [40] Variational-hemivariational inequalities for multidimensional superpotential laws
    Pop, G
    Panagiotopoulos, PD
    Naniewicz, Z
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1997, 18 (7-8) : 827 - 841