Considerations when using next-generation sequencing for genetic diagnosis of long-QT syndrome in the clinical testing laboratory

被引:6
|
作者
Chae, Hyojin [1 ,2 ]
Kim, Jiyeon [2 ]
Lee, Gun Dong [1 ,2 ]
Jang, Woori [1 ,2 ]
Park, Joonhong [1 ,2 ]
Jekarl, Dong Wook [1 ,2 ]
Oh, Yong Seog [3 ]
Kim, Myungshin [1 ,2 ]
Kim, Yonggoo [1 ,2 ]
机构
[1] Catholic Univ Korea, Coll Med, Dept Lab Med, Seoul, South Korea
[2] Catholic Univ Korea, Coll Med, Seoul St Marys Hosp, Catholic Genet Lab Ctr, Seoul, South Korea
[3] Catholic Univ Korea, Coll Med, Dept Internal Med, Div Cardiol, 222 Banpo Daero, Seoul 137701, South Korea
关键词
Long-QT syndrome; Romano-Ward syndrome; Jervell-Lange Nielsen syndrome; High-throughput nucleotide sequencing; CARDIAC-ARRHYTHMIA; MUTATIONS; STANDARDS;
D O I
10.1016/j.cca.2016.11.013
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
Background: Congenital long-QT syndrome (LQTS) is a potentially lethal cardiac electrophysiologic disorder characterized by QT interval prolongation and T-wave abnormalities. At least 13 LQTS-associated genes have been reported, but the high cost and low throughput of conventional Sanger sequencing has hampered the multi-gene-based LQTS diagnosis in clinical laboratories. Methods: We developed an NGS (next-generation sequencing)-based targeted gene panel for 13 LQTS genes using the Ion PGM platform, and a cohort of 36 LQTS patients were studied for characterization of analytical performance specifications. Results: This panel efficiently explored 212 of all 221 coding exons in 13 LQTS-associated genes. And for those genomic regions covered by the design of the NGS panel, the analytical sensitivity and analytical specificity for all potentially pathogenic variants were both 100% and showed 100% concordance with clinically validated Sanger sequencing results in five major LQTS genes (KCNQ1, KCNH2, SCN5A, KCNE1, and ICCNE2). Conclusion: This is the first description of an NGS panel targeting a multi-gene panel of 13 LQTS-associated genes. We developed and validated this robust, high-throughput NGS test and informatics pipeline for LQTS diagnosis suitable for the clinical testing laboratory. (C) 2016 Published by Elsevier B.V.
引用
收藏
页码:128 / 135
页数:8
相关论文
共 50 条
  • [21] Genetic sex validation for sample tracking in next-generation sequencing clinical testing
    Jianhong Hu
    Viktoriya Korchina
    Hana Zouk
    Maegan V. Harden
    David Murdock
    Alyssa Macbeth
    Steven M. Harrison
    Niall Lennon
    Christie Kovar
    Adithya Balasubramanian
    Lan Zhang
    Gauthami Chandanavelli
    Divya Pasham
    Robb Rowley
    Ken Wiley
    Maureen E. Smith
    Adam Gordon
    Gail P. Jarvik
    Patrick Sleiman
    Melissa A. Kelly
    Harris T. Bland
    Mullai Murugan
    Eric Venner
    Eric Boerwinkle
    Cynthia Prows
    Lisa Mahanta
    Heidi L. Rehm
    Richard A. Gibbs
    Donna M. Muzny
    BMC Research Notes, 17
  • [22] Diagnosis of genetic disorders in childhood with next-generation sequencing
    Otilia, Menyhart
    Balazs, Gyorffy
    Andras, Szabo
    ORVOSI HETILAP, 2022, 163 (51) : 2027 - 2040
  • [23] Targeted next-generation sequencing for the genetic diagnosis of dysferlinopathy
    Shin, H.
    Jang, H.
    Park, H.
    Lee, J.
    Kim, S.
    Choi, Y.
    Lee, J.
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2015, 357 : E345 - E345
  • [24] Next-generation sequencing in genetic diagnosis of skin disease
    Scott, C.
    Bland, P.
    Plagnol, V.
    Nitoiu, D.
    Poon, D.
    O'Toole, E.
    Kelsell, D.
    BRITISH JOURNAL OF DERMATOLOGY, 2012, 166 (04) : e34 - e34
  • [25] Targeted next-generation sequencing for the genetic diagnosis of dysferlinopathy
    Shin, Ha Young
    Jong, Hoon
    Han, Joo Hyung
    Park, Hyung Jun
    Lee, Jung Hwan
    Kim, So Won
    Kim, Seung Min
    Park, Young-Bun
    Kim, Dae-Seong
    Bang, Duhee
    Lee, Min Goo
    Lee, Ji Hyun
    Choi, Young-Chul
    NEUROMUSCULAR DISORDERS, 2015, 25 (06) : 502 - 510
  • [26] QTc Behavior During Exercise and Genetic Testing for the Long-QT Syndrome
    Schwartz, Peter J.
    Crotti, Lia
    CIRCULATION, 2011, 124 (20) : 2181 - 2184
  • [27] The Utility of Next-Generation Sequencing in the Diagnosis of Myelodysplastic Syndrome
    Yang, T.
    Box, A.
    Hill, C.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2016, 18 (06): : 952 - 952
  • [28] In Silico Proficiency Testing for Clinical Next-Generation Sequencing
    Duncavage, Eric J.
    Abel, Haley J.
    Pfeifer, John D.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2017, 19 (01): : 35 - 42
  • [29] Genomic Testing for Diagnosis of Genetic Disorders in Children: Chromosomal Microarray and Next-Generation Sequencing
    Narayanan, Dhanya Lakshmi
    Girisha, Katta Mohan
    INDIAN PEDIATRICS, 2020, 57 (06) : 549 - 554
  • [30] Improved genetic testing for monogenic diabetes using targeted next-generation sequencing
    S. Ellard
    H. Lango Allen
    E. De Franco
    S. E. Flanagan
    G. Hysenaj
    K. Colclough
    J. A. L. Houghton
    M. Shepherd
    A. T. Hattersley
    M. N. Weedon
    R. Caswell
    Diabetologia, 2013, 56 : 1958 - 1963