On the Strong Convergence of Halpern Type Proximal Point Algorithm

被引:14
|
作者
Khatibzadeh, Hadi [1 ]
Ranjbar, Sajad [1 ]
机构
[1] Univ Zanjan, Dept Math, Zanjan, Iran
关键词
Proximal-point algorithm; Maximal monotone operator; Strong convergence; Coercive operator; Halpern type algorithm; Subdifferential; MONOTONE-OPERATORS;
D O I
10.1007/s10957-012-0213-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The main result of this paper is to prove the strong convergence of the sequence generated by the proximal point algorithm of Halpern type to a zero of a maximal monotone operator under the suitable assumptions on the parameters and error. The results extend some of the previous results or give some different conditions for convergence of the sequence. It is also indicated that when the maximal monotone operator is the subdifferential of a convex, proper, and lower semicontinuous function, the results extend all previous results in the literature. We also prove the boundedness of the sequence generated by the algorithm with a weak coercivity condition defined in the paper and without any additional assumptions on the parameters.
引用
收藏
页码:385 / 396
页数:12
相关论文
共 50 条
  • [21] Strong Convergence of an Inexact Proximal Point Algorithm in a Banach Space
    Djafari Rouhani, Behzad
    Mohebbi, Vahid
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 186 (01) : 134 - 147
  • [22] Strong convergence of a proximal point algorithm with bounded error sequence
    Oganeditse A. Boikanyo
    Gheorghe Moroşanu
    Optimization Letters, 2013, 7 : 415 - 420
  • [23] On the strong convergence of the proximal point algorithm with an application to Hammerstein euations
    C. E. Chidume
    A. Adamu
    M. S. Minjibir
    U. V. Nnyaba
    Journal of Fixed Point Theory and Applications, 2020, 22
  • [24] A STRONG CONVERGENCE HALPERN-TYPE INERTIAL ALGORITHM FOR SOLVING SYSTEM OF SPLIT VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS
    Mebawondu, A. A.
    Jolaoso, L. O.
    Abass, H. A.
    Oyewole, O. K.
    Aremu, K. O.
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (06): : 2762 - 2791
  • [25] Strong convergence of a proximal-type algorithm in a Banach space
    Kamimura, SJ
    Takahashi, W
    SIAM JOURNAL ON OPTIMIZATION, 2003, 13 (03) : 938 - 945
  • [26] Strong convergence of hybrid approximate proximal-type algorithm
    Li, Wei
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 602 - 606
  • [27] Strong convergence of a regularization method for Rockafellar's proximal point algorithm
    Tian, ChangAn
    Song, Yisheng
    JOURNAL OF GLOBAL OPTIMIZATION, 2013, 55 (04) : 831 - 837
  • [28] Strong convergence of a viscosity proximal point algorithm with new error sequences
    Wang, Yamin
    OPTIMIZATION, 2024,
  • [29] Strong convergence of a regularization method for Rockafellar’s proximal point algorithm
    ChangAn Tian
    Yisheng Song
    Journal of Global Optimization, 2013, 55 : 831 - 837
  • [30] EFFECTIVE STRONG CONVERGENCE OF THE PROXIMAL POINT ALGORITHM IN CAT(0) SPACES
    Leustean, Laurentiu
    Sipos, Andrei
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2018, 2 (02): : 219 - 228