Casimir forces on a silicon micromechanical chip

被引:101
|
作者
Zou, J. [1 ,2 ]
Marcet, Z. [1 ,2 ]
Rodriguez, A. W. [3 ,4 ]
Reid, M. T. H. [5 ]
McCauley, A. P. [6 ]
Kravchenko, I. I. [7 ]
Lu, T. [2 ]
Bao, Y. [1 ]
Johnson, S. G. [4 ]
Chan, H. B. [2 ]
机构
[1] Univ Florida, Dept Phys, Gainesville, FL 32611 USA
[2] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China
[3] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[4] MIT, Dept Math, Cambridge, MA 02139 USA
[5] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[6] MIT, Dept Phys, Cambridge, MA 02139 USA
[7] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
关键词
MU-M; ACTUATION; SYSTEMS; RANGE;
D O I
10.1038/ncomms2842
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum fluctuations give rise to van der Waals and Casimir forces that dominate the interaction between electrically neutral objects at sub-micron separations. Under the trend of miniaturization, such quantum electrodynamical effects are expected to play an important role in micro- and nano-mechanical devices. Nevertheless, utilization of Casimir forces on the chip level remains a major challenge because all experiments so far require an external object to be manually positioned close to the mechanical element. Here by integrating a force-sensing micromechanical beam and an electrostatic actuator on a single chip, we demonstrate the Casimir effect between two micromachined silicon components on the same substrate. A high degree of parallelism between the two near-planar interacting surfaces can be achieved because they are defined in a single lithographic step. Apart from providing a compact platform for Casimir force measurements, this scheme also opens the possibility of tailoring the Casimir force using lithographically defined components of non-conventional shapes.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Theory of Casimir-Polder forces
    Skagerstam, Bo-Sture
    Rekdal, Per Kristian
    Vaskinn, Asle Heide
    [J]. PHYSICAL REVIEW A, 2009, 80 (02):
  • [42] Repulsive and attractive critical Casimir forces
    Rafai, Salima
    Bonn, Daniel
    Meunier, Jacques
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 386 (01) : 31 - 35
  • [43] Optical trapping and critical Casimir forces
    Agnese Callegari
    Alessandro Magazzù
    Andrea Gambassi
    Giovanni Volpe
    [J]. The European Physical Journal Plus, 136
  • [44] Tunable critical Casimir forces counteract Casimir-Lifshitz attraction
    Schmidt, Falko
    Callegari, Agnese
    Daddi-Moussa-Ider, Abdallah
    Munkhbat, Battulga
    Verre, Ruggero
    Shegai, Timur
    Kaell, Mikael
    Loewen, Hartmut
    Gambassi, Andrea
    Volpe, Giovanni
    [J]. NATURE PHYSICS, 2023, 19 (02) : 271 - +
  • [45] Controlling Casimir forces in MEMS and NEMS
    Esquivel-Sirvent, R
    Villarreal, C
    [J]. NANO-AND MICROELECTROMECHANICAL SYSTEMS (NEMS AND MEMS) AND MOLECULAR MACHINES, 2003, 741 : 135 - 137
  • [46] Microscopic origin of universality in Casimir forces
    Buenzli, PR
    Martin, PA
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2005, 119 (1-2) : 273 - 307
  • [47] Critical Casimir forces and anomalous wetting
    S. Balibar
    R. Ishiguro
    [J]. Pramana, 2005, 64 : 743 - 755
  • [48] Critical Casimir forces for colloidal assembly
    Nguyen, V. D.
    Dang, M. T.
    Nguyen, T. A.
    Schall, P.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (04)
  • [49] Casimir forces at the threshold of the Cherenkov effect
    Maslovski, Stanislav I.
    Silveirinha, Mario G.
    [J]. PHYSICAL REVIEW A, 2011, 84 (06):
  • [50] Critical Casimir forces and anomalous wetting
    Balibar, S
    Ishiguro, R
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2005, 64 (05): : 743 - 755