Critical Point Equation on Almost Kenmotsu Manifolds

被引:0
|
作者
De, U. C. [1 ]
Mandal, K. [1 ]
机构
[1] Univ Calcutta, Kolkata, W Bengal, India
关键词
TOTAL SCALAR CURVATURE; METRICS;
D O I
10.1007/s11253-020-01770-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the critical point equation (CPE) conjecture on almost Kenmotsu manifolds. First, we prove that if a three-dimensional (k, mu)'-almost Kenmotsu manifold satisfies theCPE, then the manifold is either locally isometric to the product space & x210d;(2)(-4) x Double-struck capital R or the manifold is a Kenmotsu manifold. Further, we prove that if the metric of an almost Kenmotsu manifold with conformal Reeb foliation satisfies theCPEconjecture, then the manifold is Einstein.
引用
收藏
页码:69 / 77
页数:9
相关论文
共 50 条
  • [31] A STUDY ON (k, mu)'-ALMOST KENMOTSU MANIFOLDS
    Li, Jin
    Liu, Ximin
    Ning, Wenfeng
    HONAM MATHEMATICAL JOURNAL, 2018, 40 (02): : 347 - 354
  • [32] Conformal vector fields on almost Kenmotsu manifolds
    De, Uday Chand
    Sardar, Arpan
    De, Krishnendu
    AFRIKA MATEMATIKA, 2023, 34 (04)
  • [33] On Einstein-type almost Kenmotsu manifolds
    Kumara, Huchchappa Aruna
    Praveena, Mundalamane Manjappa
    Naik, Devaraja Mallesha
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2023, 43 (03): : 141 - 147
  • [34] The Fischer-Marsden conjecture on non-Kenmotsu (κ, μ)′-almost Kenmotsu manifolds
    Prakasha, D. G.
    Veeresha, P.
    Venkatesha
    JOURNAL OF GEOMETRY, 2019, 110 (01)
  • [35] GRADIENT RICCI ALMOST SOLITONS ON TWO CLASSES OF ALMOST KENMOTSU MANIFOLDS
    Wang, Yaning
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (05) : 1101 - 1114
  • [36] Local symmetry on almost Kenmotsu three-manifolds
    Cho, Jong Taek
    HOKKAIDO MATHEMATICAL JOURNAL, 2016, 45 (03) : 435 - 442
  • [37] Ricci solitons on almost Kenmotsu 3-manifolds
    Wang, Yaning
    OPEN MATHEMATICS, 2017, 15 : 1236 - 1243
  • [38] Minimal Reeb vector fields on almost Kenmotsu manifolds
    Wang, Yaning
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2017, 67 (01) : 73 - 86
  • [39] HOMOGENEITY AND SYMMETRY ON ALMOST KENMOTSU 3-MANIFOLDS
    Wang, Yaning
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (04) : 917 - 934
  • [40] Minimal Reeb vector fields on almost Kenmotsu manifolds
    Yaning Wang
    Czechoslovak Mathematical Journal, 2017, 67 : 73 - 86