Wigner random banded matrices with sparse structure: Local spectral density of states

被引:92
|
作者
Fyodorov, YV
Chubykalo, OA
Izrailev, FM
Casati, G
机构
[1] PETERSBURG NUCL PHYS INST, GATCHINA 188350, RUSSIA
[2] UNIV BASQUE COUNTRY, FAC QUIM, DEPT FIS MAT, E-20080 SAN SEBASTIAN, SPAIN
[3] BUDKER INST NUCL PHYS, NOVOSIBIRSK 630090, RUSSIA
[4] UNIV MILAN, I-22100 COMO, ITALY
关键词
D O I
10.1103/PhysRevLett.76.1603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Random banded matrices with linearly increasing diagonal elements are recently considered as an attractive model for complex nuclei and atoms. Apart from early papers by Wigner there were no analytical studies on the subject. Ln this Letter we present analytical and numerical results for local spectral density of states (LDOS) for a more general case of matrices with a sparsity inside the band. The crossover from the semicircle form of LDOS to that given by the Breit-Wigner formula is studied in detail.
引用
收藏
页码:1603 / 1606
页数:4
相关论文
共 50 条
  • [41] Theory for the conditioned spectral density of noninvariant random matrices
    Perez Castillo, Isaac
    Metz, Fernando L.
    PHYSICAL REVIEW E, 2018, 98 (02)
  • [42] Spectral density of dense random networks and the breakdown of the Wigner semicircle law
    Metz, Fernando L.
    Silva, Jeferson D.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [43] A local limit law for the empirical spectral distribution of the anticommutator of independent Wigner matrices
    Anderson, Greg W.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (03): : 809 - 841
  • [44] Local deformed semicircle law and complete delocalization for Wigner matrices with random potential
    Lee, Ji Oon
    Schnelli, Kevin
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (10)
  • [45] Non-Hermitian diluted banded random matrices: Scaling of eigenfunction and spectral properties
    Hernandez-Sanchez, M.
    Tapia-Labra, G.
    Mendez-Bermudez, J. A.
    PHYSICAL REVIEW E, 2024, 110 (04)
  • [46] RANDOM MATRICES: UNIVERSALITY OF LOCAL SPECTRAL STATISTICS OF NON-HERMITIAN MATRICES
    Tao, Terence
    Vu, Van
    ANNALS OF PROBABILITY, 2015, 43 (02): : 782 - 874
  • [47] Density of states for almost-diagonal random matrices
    Yevtushenko, O
    Kravtsov, VE
    PHYSICAL REVIEW E, 2004, 69 (02): : 026104 - 1
  • [48] Density of States for Random Band Matrices in Two Dimensions
    Disertori, Margherita
    Lager, Mareike
    ANNALES HENRI POINCARE, 2017, 18 (07): : 2367 - 2413
  • [49] Density of States for Random Band Matrices in Two Dimensions
    Margherita Disertori
    Mareike Lager
    Annales Henri Poincaré, 2017, 18 : 2367 - 2413
  • [50] Local law and Tracy-Widom limit for sparse random matrices
    Lee, Ji Oon
    Schnelli, Kevin
    PROBABILITY THEORY AND RELATED FIELDS, 2018, 171 (1-2) : 543 - 616