On q-steepest descent method for unconstrained multiobjective optimization problems

被引:5
|
作者
Lai, Kin Keung [1 ]
Mishra, Shashi Kant [2 ]
Panda, Geetanjali [3 ]
Ansary, Md Abu Talhamainuddin [4 ]
Ram, Bhagwat [5 ]
机构
[1] Shenzhen Univ, Coll Econ, Shenzhen 518060, Peoples R China
[2] Banaras Hindu Univ, Inst Sci, Dept Math, Varanasi 221005, Uttar Pradesh, India
[3] Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India
[4] Indian Inst Technol Kanpur, Dept Econ Sci, Kanpur 208016, Uttar Pradesh, India
[5] Banaras Hindu Univ, Inst Sci, DST Ctr Interdisciplinary Math Sci, Varanasi 221005, Uttar Pradesh, India
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 06期
关键词
multiobjective; q-calculus; steepest descent; pareto optimality; critical point; algorithms; EVOLUTIONARY ALGORITHMS; NEWTONS METHOD; VECTOR; COMPLEXITY; STRATEGIES; VARIANCE;
D O I
10.3934/math.2020354
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The q-gradient is the generalization of the gradient based on the q-derivative. The q-version of the steepest descent method for unconstrained multiobjective optimization problems is constructed and recovered to the classical one as q equals 1. In this method, the search process moves step by step from global at the beginning to particularly neighborhood at last. This method does not depend upon a starting point. The proposed algorithm for finding critical points is verified in the numerical examples.
引用
收藏
页码:5521 / 5540
页数:20
相关论文
共 50 条
  • [1] Accelerated Diagonal Steepest Descent Method for Unconstrained Multiobjective Optimization
    Mustapha El Moudden
    Abdelkrim El Mouatasim
    [J]. Journal of Optimization Theory and Applications, 2021, 188 : 220 - 242
  • [2] Accelerated Diagonal Steepest Descent Method for Unconstrained Multiobjective Optimization
    El Moudden, Mustapha
    El Mouatasim, Abdelkrim
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 188 (01) : 220 - 242
  • [3] A MODIFIED ALGORITHM OF STEEPEST DESCENT METHOD FOR SOLVING UNCONSTRAINED NONLINEAR OPTIMIZATION PROBLEMS
    Liu, Chein-Shan
    Chang, Jiang-Ren
    Chen, Yung-Wei
    [J]. JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN, 2015, 23 (01): : 88 - 97
  • [4] Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds
    G. C. Bento
    O. P. Ferreira
    P. R. Oliveira
    [J]. Journal of Optimization Theory and Applications, 2012, 154 : 88 - 107
  • [5] Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds
    Bento, G. C.
    Ferreira, O. P.
    Oliveira, P. R.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 154 (01) : 88 - 107
  • [6] On q-Newton’s method for unconstrained multiobjective optimization problems
    Shashi Kant Mishra
    Geetanjali Panda
    Md Abu Talhamainuddin Ansary
    Bhagwat Ram
    [J]. Journal of Applied Mathematics and Computing, 2020, 63 : 391 - 410
  • [7] On q-Newton's method for unconstrained multiobjective optimization problems
    Mishra, Shashi Kant
    Panda, Geetanjali
    Ansary, Md Abu Talhamainuddin
    Ram, Bhagwat
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2020, 63 (1-2) : 391 - 410
  • [8] On q-Quasi-Newton's Method for Unconstrained Multiobjective Optimization Problems
    Lai, Kin Keung
    Mishra, Shashi Kant
    Ram, Bhagwat
    [J]. MATHEMATICS, 2020, 8 (04)
  • [9] On the convergence of steepest descent methods for multiobjective optimization
    Cocchi, G.
    Liuzzi, G.
    Lucidi, S.
    Sciandrone, M.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 77 (01) : 1 - 27
  • [10] On the convergence of steepest descent methods for multiobjective optimization
    G. Cocchi
    G. Liuzzi
    S. Lucidi
    M. Sciandrone
    [J]. Computational Optimization and Applications, 2020, 77 : 1 - 27