Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds

被引:0
|
作者
G. C. Bento
O. P. Ferreira
P. R. Oliveira
机构
[1] IME-Universidade Federal de Goiás,
[2] COPPE/Sistemas-Universidade Federal do Rio de Janeiro,undefined
关键词
Steepest descent; Pareto optimality; Vector optimization; Quasi-Fejér convergence; Quasiconvexity; Riemannian manifolds;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a steepest descent method with Armijo’s rule for multicriteria optimization in the Riemannian context. The sequence generated by the method is guaranteed to be well defined. Under mild assumptions on the multicriteria function, we prove that each accumulation point (if any) satisfies first-order necessary conditions for Pareto optimality. Moreover, assuming quasiconvexity of the multicriteria function and nonnegative curvature of the Riemannian manifold, we prove full convergence of the sequence to a critical Pareto point.
引用
收藏
页码:88 / 107
页数:19
相关论文
共 50 条