Spatio-temporal network modelling and analysis of global strong earthquakes (Mw ≥ 6.0)

被引:1
|
作者
Liu, Gang [1 ,2 ]
Fan, Qinjin [3 ]
Li, Weile [1 ]
Scaringi, Gianvito [4 ]
Long, Yujie [2 ]
He, Jing [2 ]
Li, Zheng [5 ]
机构
[1] Chengdu Univ Technol, State Key Lab Geohazard Prevent & Geoenvironm Pro, Chengdu 610059, Peoples R China
[2] Chengdu Univ Technol, Coll Earth Sci, Chengdu 610059, Peoples R China
[3] Univ Georgia, Dept Geog, Athens, GA 30602 USA
[4] Charles Univ Prague, Fac Sci, Inst Hydrogeol Engn Geol & Appl Geophys, Prague 12843, Czech Republic
[5] Sichuan Prov Land & Space Planning Res Inst, Chengdu 610084, Peoples R China
基金
中国国家自然科学基金;
关键词
LARGE AFTERSHOCKS; SCALING LAW; SEISMICITY;
D O I
10.1144/jgs2019-151
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We employ a spatio-temporal network modelling approach to identify possible relations between strong earthquakes and spatial regions worldwide. A global strong earthquake dataset containing 7736 events (M-w >= 6.0) from 1964 to 2018 is used. Statistical results identify power-law relationships and heavy tail phenomena in the spatial patterns of strong earthquakes. The interactions between regions follow the same law, with a few regions that may be hit by successive strong earthquakes with high probability. Also, we find that the interconnections between regions are mainly related to the succession of events in time, whereas the distribution of events is extremely inhomogeneous in space. This study provides a research prototype for the spatiotemporal analysis of global strong earthquakes, laying a foundation for obtaining insights into the network modelling approach for global strong earthquakes.
引用
收藏
页码:883 / 892
页数:10
相关论文
共 50 条
  • [1] On Spatio-Temporal Modelling of Stream Network Initiation
    Papageorgaki I.
    Nalbantis I.
    [J]. Environmental Processes, 2018, 5 (Suppl 1) : 239 - 257
  • [2] Modelling and analysis techniques for spatio-temporal requirements
    Techniques de modélisation et d’analyse d’exigences spatiotemporelles
    [J]. 2017, Lavoisier (22):
  • [3] Spatio-Temporal Analysis of Tehran's Historical Earthquakes Trends
    Hashemi, Mahdi
    Alesheikh, AliAsghar
    [J]. ADVANCING GEOINFORMATION SCIENCE FOR A CHANGING WORLD, 2011, 1 : 3 - 20
  • [4] Network Analysis Using Spatio-Temporal Patterns
    Miranda, Gisele H. B.
    Machicao, Jeaneth
    Bruno, Odemir M.
    [J]. 5TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES (IC-MSQUARE 2016), 2016, 738
  • [5] Elevation-based and crustal thickness-based spatial statistical analysis of global strong earthquakes (Mw ≥6.0)
    Liu, Gang
    Li, Weile
    Li, Yanna
    Xie, Zhongyuan
    Wang, Dong
    Fan, Qinjin
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 566 (566)
  • [6] Bayesian Modelling and Analysis of Spatio-Temporal Neuronal Networks
    Rigat, Fabio
    de Gunst, Mathisca
    van Pelt, Jaap
    [J]. BAYESIAN ANALYSIS, 2006, 1 (04): : 733 - 764
  • [7] A visual analytics framework for spatio-temporal analysis and modelling
    Andrienko, Natalia
    Andrienko, Gennady
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2013, 27 (01) : 55 - 83
  • [8] A visual analytics framework for spatio-temporal analysis and modelling
    Natalia Andrienko
    Gennady Andrienko
    [J]. Data Mining and Knowledge Discovery, 2013, 27 : 55 - 83
  • [9] EFFICIENT SPATIO-TEMPORAL MODELLING TO ENABLE TOPOLOGICAL ANALYSIS
    Jahn, M. W.
    Kuper, P.
    Breunig, M.
    [J]. 17TH 3D GEOINFO CONFERENCE, 2022, 10-4 (W2): : 137 - 144
  • [10] Modelling and analysis of spatio-temporal dynamics of a marine ecosystem
    Kunal Chakraborty
    Vamsi Manthena
    [J]. Nonlinear Dynamics, 2015, 81 : 1895 - 1906