Semi-supervised K-Means Clustering by Optimizing Initial Cluster Centers

被引:0
|
作者
Wang, Xin [1 ]
Wang, Chaofei [2 ]
Shen, Junyi [1 ]
机构
[1] Xi An Jiao Tong Univ, Dept Elect & Informat Engn, Xian 710049, Peoples R China
[2] China Def Sci & Technol Informat Ctr, Beijing 100142, Peoples R China
来源
关键词
semi-supervised clustering; k-means; initial cluster centers; max-distance search;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semi-supervised clustering uses a small amount of labeled data to aid and bias the clustering of unlabeled data. This paper explores the usage of labeled data to generate and optimize initial cluster centers for k-means algorithm. It proposes a max-distance search approach in order to find some optimal initial cluster centers from unlabeled data, especially when labeled data can't provide enough initial cluster centers. Experimental results demonstrate the advantages of this method over standard random selection and partial random selection, in which some initial cluster centers come from labeled data while the other come from unlabeled data by random selection.
引用
下载
收藏
页码:178 / +
页数:2
相关论文
共 50 条
  • [31] An Effective Method Determining the Initial Cluster Centers for K-means for Clustering Gene Expression Data
    Tanir, Deniz
    Nuriyeva, Fidan
    2017 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2017, : 751 - 754
  • [32] An efficient k-means clustering filtering algorithm using density based initial cluster centers
    Kumar, K. Mahesh
    Reddy, A. Rama Mohan
    INFORMATION SCIENCES, 2017, 418 : 286 - 301
  • [33] A new algorithm for initial cluster centers in k-means algorithm
    Erisoglu, Murat
    Calis, Nazif
    Sakallioglu, Sadullah
    PATTERN RECOGNITION LETTERS, 2011, 32 (14) : 1701 - 1705
  • [34] An Adaptive Robust Semi-Supervised Clustering Framework Using Weighted Consensus of Random k-Means Ensemble
    Lai, Yongxuan
    He, Songyao
    Lin, Zhijie
    Yang, Fan
    Zhou, Qifeng
    Zhou, Xiaofang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (05) : 1877 - 1890
  • [35] An Improved Semi-supervised K-means Algorithm Based on Information Gain
    Liu Zhenpeng
    Guo Ding
    Zhang Xizhong
    Wang Xu
    Zhu Xianchao
    2014 IEEE 17TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE), 2014, : 1960 - 1963
  • [36] Improved initial cluster center selection in K-means clustering
    Zhu, Minchen
    Wang, Weizhi
    Huang, Jingshan
    ENGINEERING COMPUTATIONS, 2014, 31 (08) : 1661 - 1667
  • [37] Adapting k-means for supervised clustering
    S. H. Al-Harbi
    V. J. Rayward-Smith
    Applied Intelligence, 2006, 24 : 219 - 226
  • [38] Adapting k-means for supervised clustering
    Al-Harbi, SH
    Rayward-Smith, VJ
    APPLIED INTELLIGENCE, 2006, 24 (03) : 219 - 226
  • [39] Seeding Cluster centers of K-means Clustering through Median projection
    Suresh, L.
    Simha, Jay B.
    Velur, Rajappa
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPLEX, INTELLIGENT AND SOFTWARE INTENSIVE SYSTEMS (CISIS 2010), 2010, : 217 - 222
  • [40] A method for detecting high-frequency oscillations using semi-supervised k-means and mean shift clustering
    Du, Yuxiao
    Sun, Bo
    Lu, Renquan
    Zhang, Chunling
    Wu, Hao
    NEUROCOMPUTING, 2019, 350 : 102 - 107