Semi-supervised K-Means Clustering by Optimizing Initial Cluster Centers

被引:0
|
作者
Wang, Xin [1 ]
Wang, Chaofei [2 ]
Shen, Junyi [1 ]
机构
[1] Xi An Jiao Tong Univ, Dept Elect & Informat Engn, Xian 710049, Peoples R China
[2] China Def Sci & Technol Informat Ctr, Beijing 100142, Peoples R China
来源
关键词
semi-supervised clustering; k-means; initial cluster centers; max-distance search;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semi-supervised clustering uses a small amount of labeled data to aid and bias the clustering of unlabeled data. This paper explores the usage of labeled data to generate and optimize initial cluster centers for k-means algorithm. It proposes a max-distance search approach in order to find some optimal initial cluster centers from unlabeled data, especially when labeled data can't provide enough initial cluster centers. Experimental results demonstrate the advantages of this method over standard random selection and partial random selection, in which some initial cluster centers come from labeled data while the other come from unlabeled data by random selection.
引用
收藏
页码:178 / +
页数:2
相关论文
共 50 条
  • [1] An Improved K-means text clustering algorithm By Optimizing initial cluster centers
    Xiong, Caiquan
    Hua, Zhen
    Lv, Ke
    Li, Xuan
    [J]. 2016 7TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA (CCBD), 2016, : 265 - 268
  • [2] An Improved Semi-Supervised K-Means Clustering Algorithm
    Ye Hanmin
    Lv Hao
    Sun Qianting
    [J]. 2016 IEEE INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC), 2016, : 41 - 44
  • [3] Active Learning for Semi-Supervised K-Means Clustering
    Vu, Viet-Vu
    Labroche, Nicolas
    Bouchon-Meunier, Bernadette
    [J]. 22ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2010), PROCEEDINGS, VOL 1, 2010,
  • [4] K-means clustering algorithm based on semi-supervised learning
    Department of Mathematics and Computer, Shangrao Normal College, Shangrao 334001, China
    不详
    [J]. J. Comput. Inf. Syst., 2008, 5 (2007-2013):
  • [5] Semi-supervised k-means plus
    Yoder, Jordan
    Priebe, Carey E.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (13) : 2597 - 2608
  • [6] A Semi-Supervised Text Clustering Approach Based on K-Means Algorithm
    Zhan, Lizhang
    Xu, Hong
    Chen, Xiuguo
    [J]. INTERNATIONAL CONFERENCE ON ENGINEERING AND BUSINESS MANAGEMENT (EBM2011), VOLS 1-6, 2011, : 2616 - 2620
  • [7] Semi-supervised learning techniques: k-means clustering in OODB Fragmentation
    Darabant, AS
    Campan, A
    [J]. ICCC 2004: SECOND IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL CYBERNETICS, PROCEEDINGS, 2004, : 333 - 338
  • [8] Semi-supervised Text Categorization Using Recursive K-means Clustering
    Gowda, Harsha S.
    Suhil, Mahamad
    Guru, D. S.
    Raju, Lavanya Narayana
    [J]. RECENT TRENDS IN IMAGE PROCESSING AND PATTERN RECOGNITION (RTIP2R 2016), 2017, 709 : 217 - 227
  • [9] A novel rough semi-supervised k-means algorithm for text clustering
    Tang, Lei-yu
    Wang, Zhen-hao
    Wang, Shu-dong
    Fan, Jian-cong
    Yue, Guo-wei
    [J]. INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2023, 21 (02) : 57 - 68
  • [10] Global Optimization for Semi-supervised K-means
    Sun, Xue
    Li, Kunlun
    Zhao, Rui
    Hu, Xikun
    [J]. 2009 ASIA-PACIFIC CONFERENCE ON INFORMATION PROCESSING (APCIP 2009), VOL 2, PROCEEDINGS, 2009, : 410 - +