Adaptive penalized splines for data smoothing

被引:14
|
作者
Yang, Lianqiang [1 ,2 ]
Hong, Yongmiao [2 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
[2] Cornell Univ, Dept Econ, Ithaca, NY 14853 USA
关键词
Nonparametric regression; Data smoothing; Penalized splines; Adaptivity; Local penalty; BAYESIAN P-SPLINES; REGRESSION SPLINES; SELECTION; PENALTY;
D O I
10.1016/j.csda.2016.10.022
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Data driven adaptive penalized splines are considered via the principle of constrained regression. A locally penalized vector based on the local ranges of the data is generated and added into the penalty matrix of the classical penalized splines, which remarkably improves the local adaptivity of the model for data heterogeneity. The algorithm complexity and simulations are studied. The results show that the adaptive penalized splines outperform the smoothing splines, l(1) trend filtering and classical penalized splines in estimating functions with inhomogeneous smoothness. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:70 / 83
页数:14
相关论文
共 50 条
  • [41] Locally adaptive smoothing method based on B-splines
    Vidal-Cassanya, G.
    Munoz-Barrutia, A.
    Unser, M.
    COMPUTATIONAL MODELLING OF OBJECTS REPRESENTED IN IMAGES: FUNDAMENTALS, METHODS AND APPLICATIONS, 2007, : 441 - +
  • [42] Efficient computation of smoothing splines via adaptive basis sampling
    Ma, Ping
    Huang, Jianhua Z.
    Zhang, Nan
    BIOMETRIKA, 2015, 102 (03) : 631 - 645
  • [43] Bayesian Adaptive Smoothing Splines using Stochastic Differential Equations
    Yue, Yu Ryan
    Simpson, Daniel
    Lindgren, Finn
    Rue, Havard
    BAYESIAN ANALYSIS, 2014, 9 (02): : 397 - 423
  • [44] Constrained Smoothing of Noisy Data Using Splines in Tension
    Nicholas A. Teanby
    Mathematical Geology, 2007, 39 : 419 - 434
  • [45] CALCULATION OF CUBIC SMOOTHING SPLINES FOR EQUALLY SPACED DATA
    CULPIN, D
    NUMERISCHE MATHEMATIK, 1986, 48 (06) : 627 - 638
  • [46] FITTING SMOOTHING SPLINES TO DATA FROM MULTIPLE SOURCES
    GAO, F
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1994, 23 (06) : 1665 - 1698
  • [47] Smoothing splines for nonparametric regression percentile of longitudinal data
    Hu, FC
    Taylor, JGM
    AMERICAN STATISTICAL ASSOCIATION 1996 PROCEEDINGS OF THE BIOMETRICS SECTION, 1996, : 362 - 362
  • [48] Testing for Cubic Smoothing Splines under Dependent Data
    Nummi, Tapio
    Pan, Jianxin
    Siren, Tarja
    Liu, Kun
    BIOMETRICS, 2011, 67 (03) : 871 - 875
  • [49] B-SPLINES FOR SMOOTHING AND DIFFERENTIATING DATA SEQUENCES
    JUPP, DL
    JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR MATHEMATICAL GEOLOGY, 1976, 8 (03): : 243 - 266
  • [50] Explicit forms of interpolating cubic splines and data smoothing
    Torok, Csaba
    Hudak, Juraj
    Pristas, Viktor
    Antoni, Lubomir
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 500