Communication: Explicitly-correlated second-order correction to the correlation energy in the random-phase approximation

被引:11
|
作者
Hehn, Anna-Sophia [1 ]
Klopper, Wim [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Phys Chem, Theoret Chem Grp, D-76049 Karlsruhe, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2013年 / 138卷 / 18期
关键词
CONSISTENT BASIS-SETS; AUXILIARY BASIS-SETS; GAUSSIAN-BASIS SETS; ELECTRONIC-STRUCTURE; WAVE-FUNCTIONS; IDENTITY APPROXIMATION; MOLECULAR CALCULATIONS; SEXTUPLE ZETA; RESOLUTION; TURBOMOLE;
D O I
10.1063/1.4804282
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Within the framework of density-functional theory, the basis-set convergence of energies obtained from the random-phase approximation to the correlation energy is equally slow as in wavefunction theory, as for example in coupled-cluster or many-body perturbation theory. Fortunately, the slow basis-set convergence of correlation energies obtained in the random-phase approximation can be accelerated in exactly the same manner as in wavefunction theory, namely by using explicitly correlated two-electron basis functions that are functions of the interelectronic distances. This is demonstrated in the present work. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Communication: Explicitly correlated four-component relativistic second-order Moller-Plesset perturbation theory
    Ten-no, Seiichiro
    Yamaki, Daisuke
    JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (13):
  • [32] Explicitly correlated calculation of the second-order Moller-Plesset correlation energies of Zn2+ and Zn
    Villani, C
    Klopper, W
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2005, 38 (14) : 2555 - 2567
  • [33] CORRELATION EFFECTS IN ATOMIC STRUCTURE USING RANDOM-PHASE APPROXIMATION
    ALTICK, PL
    GLASSGOLD, AE
    PHYSICAL REVIEW A-GENERAL PHYSICS, 1964, 133 (3A): : A632 - &
  • [34] Second-order approximation of exponential random graph models
    Ding, Wen-Yi
    Fang, Xiao
    SCIENCE CHINA-MATHEMATICS, 2025,
  • [35] Collective nuclear excitations with Skyrme-second random-phase approximation
    Gambacurta, D.
    Grasso, M.
    Catara, F.
    PHYSICAL REVIEW C, 2010, 81 (05):
  • [36] Extended random phase approximation method for atomic excitation energies from correlated and variationally optimized second-order density matrices
    van Aggelen, Helen
    Verstichel, Brecht
    Acke, Guillaume
    Degroote, Matthias
    Bultinck, Patrick
    Ayers, Paul W.
    Van Neck, Dimitri
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2013, 1003 : 50 - 54
  • [37] A NOTE ON SECOND RANDOM-PHASE APPROXIMATION FOR SUPERCONDUCTING STATE .1.
    FANO, G
    SAWICKI, J
    NUOVO CIMENTO, 1962, 26 (05): : 1097 - +
  • [38] LOW-ENERGY ELECTRON SCATTERING IN RANDOM-PHASE APPROXIMATION
    SCHNEIDER, B
    KRUGLER, JI
    PHYSICAL REVIEW A-GENERAL PHYSICS, 1971, 4 (03): : 1008 - +
  • [39] Hybrid functionals including random phase approximation correlation and second-order screened exchange (vol 132, 094103, 2010)
    Paier, Joachim
    Janesko, Benjamin G.
    Henderson, Thomas M.
    Scuseria, Gustavo E.
    Grueneis, Andreas
    Kresse, Georg
    JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (17):
  • [40] Explicitly correlated second-order perturbation theory using density fitting and local approximations
    Werner, HJ
    Manby, FR
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (05):