Structural investigation of strontium titanate nanoparticles and the core-shell model

被引:12
|
作者
Kiat, J. M. [1 ,2 ]
Bogicevic, C. [1 ]
Gemeiner, P. [1 ]
Al-Zein, A. [1 ,3 ]
Karolak, F. [1 ]
Guiblin, N. [1 ]
Porcher, F. [2 ]
Hehlen, B. [3 ]
Yedra, Ll. [4 ,5 ]
Estrade, S. [4 ,5 ]
Peiro, F. [4 ]
Haumont, R. [1 ,6 ]
机构
[1] Ecole Cent Paris, Lab Struct Proprietes & Modelisat Solides, CNRS UMR8580, F-92295 Chatenay Malabry, France
[2] CE Saclay, CNRS UMR12, Lab Leon Brillouin, F-91991 Gif Sur Yvette, France
[3] Univ Montpellier 2, CNRS UMR 5221, LCC, F-34095 Montpellier, France
[4] Univ Barcelona, Dept Elect, MIND IN2UB, LENS, E-08028 Barcelona, Spain
[5] Univ Barcelona, CCiT, TEM MAT, E-08028 Barcelona, Spain
[6] Univ Paris 11, CNRS UMR8182, ICMMO, Lab Physicochim Etat Solide, F-91405 Orsay, France
来源
PHYSICAL REVIEW B | 2013年 / 87卷 / 02期
关键词
GRAIN-BOUNDARIES; PHASE-TRANSITIONS; SRTIO3; TEMPERATURE; CERAMICS; FLUCTUATIONS; SCATTERING; SRZRO3;
D O I
10.1103/PhysRevB.87.024106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanoparticles of strontium titanate (SrTiO3) have been synthesized in the 15 nm to 1 mu m size range and studied using a combination of dielectric, Raman, x-ray, and neutron measurements. When diminishing the grain size, a strong reduction of dielectric permittivity, an enhancement of (normally forbidden) Raman polar modes and a progressive decoupling (or nonlinear coupling) between the antiferrodistortive (AFD) order parameter and the spontaneous strain, is observed. A qualitative explanation of all these effects could be achieved using the Petzelt core-shell model of SrTiO3 nanoparticles, with a core constituted of nonferroelectric AFD phase and a shell with frozen polarization. Depending on the route of synthesis, a strong increase of the AFD ferroelastic critical temperature T-c is observed. This behavior cannot be explained by considering only pure size or external strain effects, and a more complicated mechanism involving defects induced by the synthesis process should probably be considered. Interestingly, those are able to strongly affect the core grain structure, modifying thereby the macroscopic physical properties of SrTiO3 nanoparticle-based-materials. DOI: 10.1103/PhysRevB.87.024106
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Structural and magnetic properties of CoO-Pt core-shell nanoparticles
    Zelenakova, Adriana
    Zelenak, Vladimir
    Michalik, Stefan
    Kovac, Jozef
    Meisel, Mark W.
    PHYSICAL REVIEW B, 2014, 89 (10)
  • [22] Silicon and silicon oxide core-shell nanoparticles: Structural and photoluminescence characteristics
    Ray, Mallar
    Sarkar, Samata
    Bandyopadhyay, Nil Ratan
    Hossain, Syed Minhaz
    Pramanick, Ashit Kumar
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (07)
  • [23] Impedance spectroscopy investigation of conjugated polymer coated core-shell nanoparticles
    Mpoukouvalas, Konstantinos
    Wang, Jianjun
    Tilch, Robert
    Butt, Hans-Juergen
    Wegner, Gerhard
    JOURNAL OF APPLIED PHYSICS, 2009, 106 (06)
  • [24] Preparation and investigation of core-shell nanoparticles containing human interferon-α
    Kristo, Katalin
    Szekeres, Marta
    Makai, Zsolt
    Marki, Arpad
    Kelemen, Andras
    Bali, Laszlo
    Pallai, Zsolt
    Dekany, Imre
    Csoka, Ildiko
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2020, 573
  • [25] Atomistic investigation of pressure effects on sintering of bimetallic core-shell nanoparticles
    Kim, Juheon
    Chung, Hayoung
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 184 : 64 - 74
  • [26] Magnetism and anisotropy in core-shell nanoparticles
    Crisan, O
    Angelakeris, M
    Flevaris, NK
    Filoti, G
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2003, 5 (04): : 959 - 962
  • [27] Photon upconversion in core-shell nanoparticles
    Chen, Xian
    Peng, Denfeng
    Ju, Qiang
    Wang, Feng
    CHEMICAL SOCIETY REVIEWS, 2015, 44 (06) : 1318 - 1330
  • [28] Vibrations of spherical core-shell nanoparticles
    Crut, Aurelien
    Juve, Vincent
    Mongin, Denis
    Maioli, Paolo
    Del Fatti, Natalia
    Vallee, Fabrice
    PHYSICAL REVIEW B, 2011, 83 (20):
  • [29] Passivated iron as core-shell nanoparticles
    Carpenter, EE
    Calvin, S
    Stroud, RM
    Harris, VG
    CHEMISTRY OF MATERIALS, 2003, 15 (17) : 3245 - 3246
  • [30] Stability of core-shell magnetite nanoparticles
    Kalska-Szostko, B.
    Wykowska, U.
    Satula, D.
    Zambrzycka, E.
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2014, 113 : 295 - 301