Integration of liquid crystal elastomer photomechanical optical devices

被引:4
|
作者
Dawson, Nathan J. [1 ]
Kuzyk, Mark G. [2 ]
Neal, Jeremy [3 ]
Luchette, Paul [3 ]
Palffy-Muhoray, Peter [3 ]
机构
[1] Youngstown State Univ, Dept Phys & Astron, Youngstown, OH 44555 USA
[2] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA
[3] Kent State Univ, Inst Liquid Crystal, Kent, OH 44242 USA
来源
LIQUID CRYSTALS XVI | 2012年 / 8475卷
基金
美国国家科学基金会;
关键词
Photomechanical effect; photothermal heating; photo-isomerization; liquid crystal elastomer; photomechanical system; PEROT WAVE-GUIDE; POLYMER FIBERS; MECHANISMS; SYSTEMS; SHAPE;
D O I
10.1117/12.929334
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Azobenzene dye-doped liquid crystal elastomers (LCE) are known to give strong photomechanical responses. We review photothermal heating actuated Photomechanical Optical Devices (PODs) and applications to systems by examining successful attempts at cascading macroscopic PODs in a series configuration. Using these results, we present some new design strategies that have the potential of miniaturizing these systems with increases in the response time and system integration.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Optical quantum computing using liquid crystal devices
    Okada, Hiroyuki
    Watanabe, Tomoya
    Yokotsuka, Satoshi
    Terazawa, Akira
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2024, 768 (07) : 59 - 90
  • [22] Liquid Crystal Devices for the Reconfigurable Generation of Optical Vortices
    Albero, Jorge
    Garcia-Martinez, Pascuala
    Bennis, Noureddine
    Oton, Eva
    Cerrolaza, Beatriz
    Moreno, Ignacio
    Davis, Jeffrey A.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2012, 30 (18) : 3055 - 3060
  • [23] Liquid crystal devices for compact optical space instruments
    Alvarez-Herrero, Alberto
    Garcia Parejo, Pilar
    Campos-Jara, Antonio
    Ayuso Angulo, Leire
    Garranzo-Garcia, Daniel
    Silva-Lopez, Manuel
    Jimenez-Girela, Angel
    Merino-Perez, Daniel
    Fernandez Borrell, Jesus
    POLARIZATION: MEASUREMENT, ANALYSIS, AND REMOTE SENSING XVI, 2024, 13050
  • [24] Integrating liquid crystal based optical devices in photonic crystal fibers
    Alkeskjold, Thomas Tanggaard
    Scolari, Lara
    Noordegraaf, Danny
    Laegsgaard, Jesper
    Weirich, Johannes
    Wei, Lei
    Tartarini, Giovanni
    Bassi, Paolo
    Gauza, Sebastian
    Wu, Shin-Tson
    Bjarklev, Anders
    OPTICAL AND QUANTUM ELECTRONICS, 2007, 39 (12-13) : 1009 - 1019
  • [25] Integrating liquid crystal based optical devices in photonic crystal fibers
    Thomas Tanggaard Alkeskjold
    Lara Scolari
    Danny Noordegraaf
    Jesper Lægsgaard
    Johannes Weirich
    Lei Wei
    Giovanni Tartarini
    Paolo Bassi
    Sebastian Gauza
    Shin-Tson Wu
    Anders Bjarklev
    Optical and Quantum Electronics, 2007, 39 : 1009 - 1019
  • [26] Photomechanical response under physiological conditions of azobenzene-containing 4D-printed liquid crystal elastomer actuators
    Ceamanos, Lorena
    Mulder, Dirk J.
    Kahveci, Zehra
    Lopez-Valdeolivas, Maria
    Schenning, Albert P. H. J.
    Sanchez-Somolinos, Carlos
    JOURNAL OF MATERIALS CHEMISTRY B, 2023, 11 (18) : 4083 - 4094
  • [27] Optical Characteristics of Stretchable Chiral Liquid Crystal Elastomer under Multiaxial Stretching
    Kwon, Chaehyun
    Nam, Seungmin
    Han, Sang Hyun
    Choi, Su Seok
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (46)
  • [28] Liquid crystal devices and devices for liquid crystal research.
    Patel, JS
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS SCIENCE AND TECHNOLOGY SECTION A-MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1997, 302 : 439 - 450
  • [29] Graphene-Enabled Superior and Tunable Photomechanical Actuation in Liquid Crystalline Elastomer Nanocomposites
    Yang, Yingkui
    Zhan, Wenjie
    Peng, Rengui
    He, Chengen
    Pang, Xinchang
    Shi, Dean
    Jiang, Tao
    Lin, Zhiqun
    ADVANCED MATERIALS, 2015, 27 (41) : 6376 - 6381
  • [30] Strengthening Liquid Crystal Elastomer Muscles
    Liu, Xiao
    Zhou, Xiang
    Liu, Zunfeng
    ACCOUNTS OF CHEMICAL RESEARCH, 2025, 58 (06) : 907 - 918