The data processing pipeline for the MUSE instrument

被引:265
|
作者
Weilbacher, Peter M. [1 ]
Palsa, Ralf [2 ]
Streicher, Ole [1 ]
Bacon, Roland [3 ]
Urrutia, Tanya [1 ]
Wisotzki, Lutz [1 ]
Conseil, Simon [3 ,4 ]
Husemann, Bernd [5 ]
Jarno, Aurelien [3 ]
Kelz, Andreas [1 ]
Pecontal-Rousset, Arlette [3 ]
Richard, Johan [3 ]
Roth, Martin M. [1 ]
Selman, Fernando [6 ]
Vernet, Joel
机构
[1] Leibniz Inst Astrophys Potsdam AIP, Sternwarte 16, D-14482 Potsdam, Germany
[2] European Southern Observ, ESO, Karl Schwarzschild Str 2, D-85748 Garching, Germany
[3] Univ Lyon1, Univ Lyon, Ens Lyon, CNRS,Ctr Rech Astrophys Lyon,UMR5574, F-69230 St Genis Laval, France
[4] Gemini Observ, NSFs OIR Lab, Casilla 603, La Serena, Chile
[5] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany
[6] European Southern Observ, Ave Alonso Cordova 3107, Santiago, Chile
关键词
instrumentation: spectrographs; techniques: imaging spectroscopy; methods: observational; methods: data analysis; INTEGRAL FIELD SPECTROSCOPY; DATA REDUCTION; REFRACTIVE-INDEX; ASTRO-WISE; DESIGN; SPECTROGRAPH; SUBTRACTION; ABSORPTION; KINEMATICS; ALGORITHM;
D O I
10.1051/0004-6361/202037855
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The processing of raw data from modern astronomical instruments is often carried out nowadays using dedicated software, known as pipelines, largely run in automated operation. In this paper we describe the data reduction pipeline of the Multi Unit Spectroscopic Explorer (MUSE) integral field spectrograph operated at the ESO Paranal Observatory. This spectrograph is a complex machine: it records data of 1152 separate spatial elements on detectors in its 24 integral field units. Efficiently handling such data requires sophisticated software with a high degree of automation and parallelization. We describe the algorithms of all processing steps that operate on calibrations and science data in detail, and explain how the raw science data is transformed into calibrated datacubes. We finally check the quality of selected procedures and output data products, and demonstrate that the pipeline provides datacubes ready for scientific analysis.
引用
收藏
页数:30
相关论文
共 50 条
  • [41] An integrated processing pipeline for irregular volume data
    Yang, CK
    Chiueh, TC
    VOLUME GRAPHICS 2005, 2005, : 147 - +
  • [42] An Extensible Parsing Pipeline for Unstructured Data Processing
    Jain, Shubham
    de Buitleir, Amy
    Fallon, Enda
    2022 24TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT): ARITIFLCIAL INTELLIGENCE TECHNOLOGIES TOWARD CYBERSECURITY, 2022, : 312 - +
  • [43] The GONG plus plus data processing pipeline
    Hill, F
    Bolding, J
    Toner, C
    Corbard, T
    Wampler, S
    Goodrich, B
    Goodrich, J
    Eliason, P
    Hanna, KD
    PROCEEDINGS OF SOHO 12/GONG (PLUS) 2002 ON LOCAL AND GLOBAL HELIOSEISMOLOGY: THE PRESENT AND FUTURE, 2003, 517 : 295 - 298
  • [44] Data Processing Pipeline for the Earth 2.0 mission
    Yao, Xinyu
    Ge, Jian
    Zhang, Hui
    Willis, Kevin
    Zhu, Jiapeng
    SPACE TELESCOPES AND INSTRUMENTATION 2022: OPTICAL, INFRARED, AND MILLIMETER WAVE, 2022, 12180
  • [45] ArrayPipe: a flexible processing pipeline for microarray data
    Hokamp, K
    Roche, FM
    Acab, M
    Rousseau, ME
    Kuo, B
    Goode, D
    Aeschliman, D
    Bryan, J
    Babiuk, LA
    Hancock, REW
    Brinkman, FSL
    NUCLEIC ACIDS RESEARCH, 2004, 32 : W457 - W459
  • [46] PHANGS-ALMA Data Processing and Pipeline
    Leroy, Adam K.
    Hughes, Annie
    Liu, Daizhong
    Pety, Jerome
    Rosolowsky, Erik
    Saito, Toshiki
    Schinnerer, Eva
    Schruba, Andreas
    Usero, Antonio
    Faesi, Christopher M.
    Herrera, Cinthya N.
    Chevance, Melanie
    Hygate, Alexander P. S.
    Kepley, Amanda A.
    Koch, Eric W.
    Querejeta, Miguel
    Sliwa, Kazimierz
    Will, David
    Wilson, Christine D.
    Anand, Gagandeep S.
    Barnes, Ashley
    Belfiore, Francesco
    Beslic, Ivana
    Bigiel, Frank
    Blanc, Guillermo A.
    Bolatto, Alberto D.
    Boquien, Mederic
    Cao, Yixian
    Chandar, Rupali
    Chastenet, Jeremy
    Chiang, I-Da
    Congiu, Enrico
    Dale, Daniel A.
    Deger, Sinan
    den Brok, Jakob S.
    Eibensteiner, Cosima
    Emsellem, Eric
    Garcia-Rodriguez, Axel
    Glover, Simon C. O.
    Grasha, Kathryn
    Groves, Brent
    Henshaw, Jonathan D.
    Jimenez Donaire, Maria J.
    Kim, Jaeyeon
    Klessen, Ralf S.
    Kreckel, Kathryn
    Kruijssen, J. M. Diederik
    Larson, Kirsten L.
    Lee, Janice C.
    Mayker, Ness
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2021, 255 (01):
  • [47] A Data Pipeline for Extraction and Processing of Electrocardiogram Recordings
    Prim, Joshua
    Uhlemann, Tim
    Gumpfer, Nils
    Gruen, Dimitri
    Wegener, Sebastian
    Krug, Sabrina
    Hannig, Jennifer
    Keller, Till
    Guckert, Michael
    2021 COMPUTING IN CARDIOLOGY (CINC), 2021,
  • [48] Stringed-instrument data processing and stringed-instrument acoustics
    Lutherie informatique et lutherie acoustique
    Laplane, J., 1600, Publ by Editions de Physique, Les Ulis, France (04):
  • [49] Solar Data Tools: Automatic Solar Data Processing Pipeline
    Meyers, Bennet E.
    Apostolaki-Iosifidou, Elpiniki
    Schelhas, Laura T.
    2020 47TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2020, : 655 - 656
  • [50] Processing MUSE hyperspectral data: Denoising, deconvolution and detection of astrophysical sources
    Bourguignon, Sebastien
    Mary, David
    Slezaka, Eric
    STATISTICAL METHODOLOGY, 2012, 9 (1-2) : 32 - 43