Minimal surfaces with non-trivial geometry in the three-dimensional Heisenberg group

被引:0
|
作者
Dorfmeister, Josef F. [1 ]
Inoguchi, Jun-ichi [2 ]
Kobayashi, Shimpei [2 ]
机构
[1] Tech Univ Munich, Fak Math, Boltzmann Str 3, D-85747 Garching, Germany
[2] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
来源
COMPLEX MANIFOLDS | 2022年 / 9卷 / 01期
关键词
Minimal surfaces; Heisenberg group; symmetries; generalized Weierstrass type representation; CONSTANT MEAN-CURVATURE; BERNSTEIN PROBLEM; REPRESENTATION;
D O I
10.1515/coma-2021-0141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study symmetric minimal surfaces in the three-dimensional Heisenberg group Nil(3) using the generalized Weierstrass type representation, the so-called loop group method. In particular, we will present a general scheme for how to construct minimal surfaces in Nil(3) with non-trivial geometry. Special emphasis will be put on equivariant minimal surfaces. Moreover, we will classify equivariant minimal surfaces given by one-parameter subgroups of the isometry group Iso(degrees)(Nil(3)) of Nil(3).
引用
收藏
页码:285 / 336
页数:52
相关论文
共 50 条