Minimal surfaces with non-trivial geometry in the three-dimensional Heisenberg group

被引:0
|
作者
Dorfmeister, Josef F. [1 ]
Inoguchi, Jun-ichi [2 ]
Kobayashi, Shimpei [2 ]
机构
[1] Tech Univ Munich, Fak Math, Boltzmann Str 3, D-85747 Garching, Germany
[2] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
来源
COMPLEX MANIFOLDS | 2022年 / 9卷 / 01期
关键词
Minimal surfaces; Heisenberg group; symmetries; generalized Weierstrass type representation; CONSTANT MEAN-CURVATURE; BERNSTEIN PROBLEM; REPRESENTATION;
D O I
10.1515/coma-2021-0141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study symmetric minimal surfaces in the three-dimensional Heisenberg group Nil(3) using the generalized Weierstrass type representation, the so-called loop group method. In particular, we will present a general scheme for how to construct minimal surfaces in Nil(3) with non-trivial geometry. Special emphasis will be put on equivariant minimal surfaces. Moreover, we will classify equivariant minimal surfaces given by one-parameter subgroups of the isometry group Iso(degrees)(Nil(3)) of Nil(3).
引用
收藏
页码:285 / 336
页数:52
相关论文
共 50 条
  • [1] RULED MINIMAL SURFACES IN THE THREE-DIMENSIONAL HEISENBERG GROUP
    Shin, Heayong
    Kim, Young Wook
    Koh, Sung-Eun
    Lee, Hyung Yong
    Yang, Seong-Deog
    PACIFIC JOURNAL OF MATHEMATICS, 2013, 261 (02) : 477 - 496
  • [2] Timelike Minimal Surfaces in the Three-Dimensional Heisenberg Group
    Hirotaka Kiyohara
    Shimpei Kobayashi
    The Journal of Geometric Analysis, 2022, 32
  • [3] Minimal Translation Surfaces in the Three-Dimensional Heisenberg Group
    Ramis, Cagla
    Munteanu, Marian Ioan
    FILOMAT, 2019, 33 (06) : 1583 - 1592
  • [4] Timelike Minimal Surfaces in the Three-Dimensional Heisenberg Group
    Kiyohara, Hirotaka
    Kobayashi, Shimpei
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (08)
  • [5] A LOOP GROUP METHOD FOR MINIMAL SURFACES IN THE THREE-DIMENSIONAL HEISENBERG GROUP
    Dorfmeister, Josef F.
    Inoguchi, Jun-Ichi
    Kobayashi, Shimpei
    ASIAN JOURNAL OF MATHEMATICS, 2016, 20 (03) : 409 - 448
  • [6] Minimal cylinders in the three-dimensional Heisenberg group
    Kobayashi, Shimpei
    MATHEMATISCHE ANNALEN, 2024, 388 (03) : 3299 - 3317
  • [7] Minimal cylinders in the three-dimensional Heisenberg group
    Shimpei Kobayashi
    Mathematische Annalen, 2024, 388 : 3299 - 3317
  • [8] Minimal surfaces in three dimensional Lorentzian Heisenberg group
    Turhan E.
    Altay G.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2014, 55 (1): : 1 - 23
  • [9] Weierstrass Representation for Surfaces in the Three-Dimensional Heisenberg Group
    Qun CHEN Hongbing QIU School of Mathematics and StatisticsWuhan UniversityWuhan ChinaSchool of Mathematical SciencesFudan UniversityShanghai China
    ChineseAnnalsofMathematics, 2010, 31 (01) : 119 - 132
  • [10] Weierstrass representation for surfaces in the three-dimensional Heisenberg group
    Chen, Qun
    Qiu, Hongbing
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2010, 31 (01) : 119 - 132