Carbon nanotubes prevent the coagulation at high shear rates of aqueous suspensions of equiaxed ceramic nanoparticles

被引:12
|
作者
Candelario, Victor M. [1 ]
Moreno, Rodrigo [2 ]
Ortiz, Angel L. [1 ]
机构
[1] Univ Extremadura, Dept Ingn Mecan Energet & Mat, Badajoz 06006, Spain
[2] CSIC, Inst Ceram & Vidrio, Madrid 28049, Spain
关键词
Aqueous colloidal processing; CNTs; Dispersion; Nanoceramics; Ceramic nanocomposites; ZIRCONIA; Y3AL5O12; BEHAVIOR; POWDERS;
D O I
10.1016/j.jeurceramsoc.2013.09.003
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Equiaxed ceramic nanoparticles and their mixtures are expected to exhibit shear-thinning behaviour when dispersed colloidally in aqueous media, whereas shear-thickening is the expectation for large aspect ratio phases such as, for example, carbon nanotubes (CNTs). Here, contrary experimental evidence is presented demonstrating the occurrence of severe coagulation at high shear rates in colloidally stable, semi-concentrated, aqueous suspensions of equiaxed SiC nanoparticles (major phase) mixed with equiaxed Y3Al5O12 nanoparticles (liquid-phase sintering additive), and how CNT addition prevents this coagulation if sufficient sonication is applied. It is also shown that although shear-thinning is the natural behaviour of the ceramic suspension up to moderate shear rates, coagulation is eventually a phenomenon inherent to the aqueous colloidal processing of these suspensions, with the critical shear rate for coagulation increasing and the rheopexy decreasing the better is the initial dispersion state achieved with the sonication. It is also shown that the critical shear rate for coagulation depends on the exact condition of shear rate increase, and that the re-sheared suspensions coagulate more significantly and at lower shear rates than the fresh suspensions. The mechanisms by which this coagulation occurs and is impeded by the CNTs are discussed, together with broader implications of these phenomena for the environmentally friendly processing of nanostructured ceramics and ceramic composites. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:555 / 563
页数:9
相关论文
共 50 条
  • [31] STRUCTURE AND ELECTROCHEMICAL PROPERTIES OF AQUEOUS SUSPENSIONS OF FUNCTIONALIZED SINGLE-AND MULTIWALLED CARBON NANOTUBES
    Ritter, U.
    Tsierkezos, N. G.
    Prylutskyy, Yu. I.
    Cherepanov, V. V.
    Senenko, A. I.
    Marchenko, A. A.
    Naumovets, A. G.
    UKRAINIAN JOURNAL OF PHYSICS, 2014, 59 (04): : 433 - 438
  • [32] Enhanced Solubilization of Carbon Nanotubes in Aqueous Suspensions of Anionic-Nonionic Surfactant Mixtures
    Alves da Cunha, J. R.
    Fantini, C.
    Andrade, N. F.
    Alcantara, P., Jr.
    Saraiva, G. D.
    Souza Filho, A. G.
    Terrones, M.
    dos Santos, M. C.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (47): : 25138 - 25145
  • [33] Effects of antifreezes and bundled material on the stability and optical limiting in aqueous suspensions of carbon nanotubes
    Vlasov, Andrey Yu.
    Venediktova, Anastasia V.
    Videnichev, Dmitry A.
    Kislyakov, Ivan M.
    Obraztsova, Elena D.
    Sokolova, Ekaterina P.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2012, 249 (12): : 2341 - 2344
  • [34] Vasoactive effects of stable aqueous suspensions of single walled carbon nanotubes in hamsters and mice
    Frame, Mary D.
    Dewar, Anthony M.
    Chowdhury, Sayan Mullick
    Sitharaman, Balaji
    NANOTOXICOLOGY, 2014, 8 (08) : 867 - 875
  • [35] Characterization and Dispersion of Multiwalled Carbon Nanotubes (MWCNTs) in Aqueous Suspensions: Surface Chemistry Aspects
    Singh, Bimal P.
    Nayak, Sasmita
    Samal, Samata
    Bhattacharjee, Sarama
    Besra, Laxmidhar
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2012, 33 (07) : 1021 - 1029
  • [36] Exfoliation of single-wall carbon nanotubes in aqueous surfactant suspensions: A Raman study
    Izard, N
    Riehl, D
    Anglaret, E
    PHYSICAL REVIEW B, 2005, 71 (19)
  • [37] VISCOSITY OF FTORLON F-4D SUSPENSIONS AT HIGH SHEAR RATES
    BUDTOV, VP
    YAVZINA, NE
    DOMNICHEVA, NA
    PETROVA, AL
    COLLOID JOURNAL OF THE USSR, 1981, 43 (06): : 945 - 949
  • [38] Ceramic nanocomposites reinforced with a high volume fraction of carbon nanotubes
    Kun Yang
    Laifei Cheng
    Linan An
    Gang Shao
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2017, 32 : 47 - 50
  • [39] Ceramic Nanocomposites Reinforced with a High Volume Fraction of Carbon Nanotubes
    杨坤
    CHENG Laifei
    AN Linan
    SHAO Gang
    Journal of Wuhan University of Technology(Materials Science), 2017, 32 (01) : 47 - 50
  • [40] Ceramic Nanocomposites Reinforced with a High Volume Fraction of Carbon Nanotubes
    Kun, Yang
    Laifei, Cheng
    Linan, An
    Gang, Shao
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2017, 32 (01): : 47 - 50