Ranking Projects Using Multivariate Statistics

被引:0
|
作者
de Oliveira, Karlson B. [1 ]
Moreira de Oliviera, Josyleuda Melo [1 ]
Holanda Filho, Raimir [1 ]
机构
[1] UNIFOR Masters Degree Appl Comp Sci ACS, BR-60811341 Fortaleza, Ceara, Brazil
来源
INNOVATIONS AND ADVANCED TECHNIQUES IN SYSTEMS, COMPUTING SCIENCES AND SOFTWARE ENGINEERING | 2008年
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Organizational evaluation is a complex activity which demands a lot of effort. In order to accomplish this activity it is necessary to work with process and project indicators. Looking for project indicators it is necessary to identify good and bad projects to treat problems and to consider improvements. This paper presents a new methodology to rank projects using principal component analysis, a simple and efficient multivariate statistical method. This method aggregates project measurement indicators in just one score during the execution of the Organizational Evaluation macroactivity defined in the Organizational Software Measurement Process (OSMP).
引用
收藏
页码:293 / 298
页数:6
相关论文
共 50 条
  • [21] Ranking the risk categories in international projects using the TOPSIS method
    Dandage, Rahul
    Mantha, Shankar S.
    Rane, Santosh B.
    INTERNATIONAL JOURNAL OF MANAGING PROJECTS IN BUSINESS, 2018, 11 (02) : 317 - 331
  • [22] Efficient multispectral texture segmentation using multivariate statistics
    Portillo-García, J
    Trueba-Santander, I
    de Miguel-Vela, G
    Alberola-López, C
    IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 1998, 145 (05): : 357 - 364
  • [23] Efficient multispectral texture segmentation using multivariate statistics
    Sistemas y Radiocomunicaciones of, the Politechnical Univ of Madrid, Madrid, Spain
    IEE Proc Vision Image Signal Proc, 5 (357-364):
  • [24] USING MULTIVARIATE STATISTICS - TABACHNICK,BG, FIDELL,LS
    WIDAMAN, KF
    APPLIED PSYCHOLOGICAL MEASUREMENT, 1984, 8 (01) : 119 - 120
  • [25] Improved diagnosis of sensor faults using multivariate statistics
    Lieftucht, D
    Kruger, U
    Irwin, GW
    PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 4403 - 4407
  • [26] Patent Registration Prediction Methodology Using Multivariate Statistics
    Jung, Won-Gyo
    Park, Sang-Sung
    Jang, Dong-Sik
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2011, E94D (11): : 2219 - 2226
  • [27] Exploring good cycling cities using multivariate statistics
    Collins A.J.
    Jordan C.A.
    Robinson R.M.
    Cornelius C.
    Gore R.
    Environment Systems and Decisions, 2020, 40 (4) : 526 - 543
  • [28] Monitoring a complex refining process using multivariate statistics
    AlGhazzawi, Ashraf
    Lennox, Barry
    CONTROL ENGINEERING PRACTICE, 2008, 16 (03) : 294 - 307
  • [29] Multivariate Regression with Stable Errors Using Order Statistics
    Noughabi, Reza Alizadeh
    Mohammadpour, Adel
    FLUCTUATION AND NOISE LETTERS, 2022, 21 (03):
  • [30] Model predictive control monitoring using multivariate statistics
    AlGhazzawi, Ashraf
    Lennox, Barry
    JOURNAL OF PROCESS CONTROL, 2009, 19 (02) : 314 - 327