Polynomial algorithms for nested univariate clustering

被引:3
|
作者
Hansen, P
Jaumard, B
Simeone, B
机构
[1] Ecole Polytech, GERAD, Montreal, PQ H3T 1V6, Canada
[2] Ecole Polytech, Ecole Hautes Etud Commerciales, Montreal, PQ H3T 1V6, Canada
[3] Univ La Sapienza, Dept Stat, Rome, Italy
基金
加拿大自然科学与工程研究理事会;
关键词
clustering; clique; polynomial algorithm;
D O I
10.1016/S0012-365X(01)00135-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Clique partitioning in Euclidean space R-n consists in finding a partition of a given set of N points into M clusters in order to minimize the sum of within-cluster interpoint distances. For n = 1 clusters need not consist of consecutive points on a line but have a nestedness property. Exploiting this property, an O((NM2)-M-5) dynamic programming algorithm is proposed. A theta(N) algorithm is also given for the case M = 2. (C) 2002 Published by Elsevier Science B.V.
引用
收藏
页码:93 / 105
页数:13
相关论文
共 50 条
  • [1] Implementations of Efficient Univariate Polynomial Matrix Algorithms and Application to Bivariate Resultants
    Hyun, Seung Gyu
    Neiger, Vincent
    Schost, Eric
    PROCEEDINGS OF THE 2019 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC '19), 2019, : 235 - 242
  • [2] Assessing Search and Unsupervised Clustering Algorithms in Nested Sampling
    Maillard, Lune
    Finocchi, Fabio
    Trassinelli, Martino
    ENTROPY, 2023, 25 (02)
  • [3] The second discriminant of a univariate polynomial
    Wang, Dongming
    Yang, Jing
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (06) : 1157 - 1180
  • [4] The second discriminant of a univariate polynomial
    Dongming Wang
    Jing Yang
    Science China(Mathematics), 2021, 64 (06) : 1157 - 1180
  • [5] The second discriminant of a univariate polynomial
    Dongming Wang
    Jing Yang
    Science China Mathematics, 2021, 64 : 1157 - 1180
  • [6] EXTENDED UNIVARIATE ALGORITHMS
    ZILINSKAS, A
    COMPUTING, 1989, 41 (03) : 275 - 276
  • [7] On Projective Equivalence of Univariate Polynomial Subspaces
    Crooks, Peter
    Milson, Robert
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
  • [8] On univariate and bivariate polynomial spline approximation
    Dagnino, C
    Demichelis, V
    Lamberti, P
    Pittaluga, G
    Sacripante, L
    ANALISI NUMERICA: METODI E SOFTWARE MATEMATICO, SUPPLEMENTO, 2000, 46 : 455 - 466
  • [9] Mathieu subspaces of univariate polynomial algebras
    van den Essen, Arno
    Zhao, Wenhua
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (07) : 1316 - 1324
  • [10] Algebraic approach to univariate polynomial derivation
    Tanackov, Ilija
    Pavkov, Ivan
    Dupljanin, Dordije
    Zivlak, Nikola
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (06) : 981 - 988